Assembly-line synthesis of organic molecules with tailored shapes

Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-09, Vol.513 (7517), p.183-188
Hauptverfasser: Burns, Matthew, Essafi, Stéphanie, Bame, Jessica R., Bull, Stephanie P., Webster, Matthew P., Balieu, Sébastien, Dale, James W., Butts, Craig P., Harvey, Jeremy N., Aggarwal, Varinder K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 7517
container_start_page 183
container_title Nature (London)
container_volume 513
creator Burns, Matthew
Essafi, Stéphanie
Bame, Jessica R.
Bull, Stephanie P.
Webster, Matthew P.
Balieu, Sébastien
Dale, James W.
Butts, Craig P.
Harvey, Jeremy N.
Aggarwal, Varinder K.
description Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-controlled homologation of a boronic ester. This process relies on the reactivity of α-lithioethyl tri-isopropylbenzoate, which inserts into carbon–boron bonds with exceptionally high fidelity and stereocontrol; each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. We used this method to generate organic molecules that contain ten contiguous, stereochemically defined methyl groups. Several stereoisomers were synthesized and shown to adopt different shapes—helical or linear—depending on the stereochemistry of the methyl groups. This work should facilitate the rational design of molecules with predictable shapes, which could have an impact in areas of molecular sciences in which bespoke molecules are required. The iterative, reagent-controlled homologation of a boronic ester is used to create an ‘assembly line’ capable of synthesizing organic molecules that contain ten contiguous, stereochemically defined methyl groups and which have different shapes depending on the stereochemistry of those groups. Assembly-line synthesis of defined complex molecules Biological systems have evolved sophisticated machinery for organic synthesis resembling molecular assembly-line processes. Until now chemists have been able to mimic this type of approach only to synthesize peptides and oligonucleotides, creating simple amide (C–N) or phosphate (P–O) bonds. These authors emulate nature by creating a molecular assembly line through iterative reagent-controlled homologations of boronic esters. The process relies on the reactivity of α-lithioethyl tri-ispopropylbenzoate, which inserts into carbon–boron bonds with high fidelity and stereocontrol. Each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. They use this method to generate several organic molecules that contain ten contiguous, stereochemically defined methyl groups. This work is a step towards the rational design and synthesis of complex molecules with predictable shape.
doi_str_mv 10.1038/nature13711
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01140341v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660142405</galeid><sourcerecordid>A660142405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c866t-e702c6472f07583277400e2f22603b601eed878614dca462d794adaa97da153f3</originalsourceid><addsrcrecordid>eNqN001v1DAQBuAIgehSOHFHEZwqSBk7ju0coxXQSiuQoIij5XUmWVf52NoJsP8eV1tKVkpp5YMl5_HrUTQTRS8JnBJI5ftOD6NDkgpCHkULwgRPGJficbQAoDIBmfKj6Jn3lwCQEcGeRkc0o5CLXCyiovAe23WzSxrbYex33bBBb33cV3Hvat1ZE7d9g2Zs0Me_7LCJB22b3mEZ-43eon8ePal04_HFzX4cff_44WJ5lqy-fDpfFqvESM6HBAVQw5mgFYhMplQIBoC0opRDuuZAEEspJCesNJpxWoqc6VLrXJSaZGmVHkcn-9yNbtTW2Va7neq1VWfFSl2fASEMUkZ-kmDf7O3W9Vcj-kFd9qPrQnmKZJyK8Euk-Kdq3aCyXdUPTpvWeqMKHipilEH2X5VKmpIcgAWVzKgaO3S66TusbDg-SH2In-a_nvFma6_UNPRONE06nUFhldhaM1vqgy5MXzg5uBDMgL-HWo_eq_NvXw_D77PT3Ld32-Lix_LzYfL9eibbuN57h9VtixFQ12OmJmMW9Kub_hrXLZa39u9cBfBuD3z41NXoJg04k_cHHPclyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562783687</pqid></control><display><type>article</type><title>Assembly-line synthesis of organic molecules with tailored shapes</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Burns, Matthew ; Essafi, Stéphanie ; Bame, Jessica R. ; Bull, Stephanie P. ; Webster, Matthew P. ; Balieu, Sébastien ; Dale, James W. ; Butts, Craig P. ; Harvey, Jeremy N. ; Aggarwal, Varinder K.</creator><creatorcontrib>Burns, Matthew ; Essafi, Stéphanie ; Bame, Jessica R. ; Bull, Stephanie P. ; Webster, Matthew P. ; Balieu, Sébastien ; Dale, James W. ; Butts, Craig P. ; Harvey, Jeremy N. ; Aggarwal, Varinder K.</creatorcontrib><description>Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-controlled homologation of a boronic ester. This process relies on the reactivity of α-lithioethyl tri-isopropylbenzoate, which inserts into carbon–boron bonds with exceptionally high fidelity and stereocontrol; each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. We used this method to generate organic molecules that contain ten contiguous, stereochemically defined methyl groups. Several stereoisomers were synthesized and shown to adopt different shapes—helical or linear—depending on the stereochemistry of the methyl groups. This work should facilitate the rational design of molecules with predictable shapes, which could have an impact in areas of molecular sciences in which bespoke molecules are required. The iterative, reagent-controlled homologation of a boronic ester is used to create an ‘assembly line’ capable of synthesizing organic molecules that contain ten contiguous, stereochemically defined methyl groups and which have different shapes depending on the stereochemistry of those groups. Assembly-line synthesis of defined complex molecules Biological systems have evolved sophisticated machinery for organic synthesis resembling molecular assembly-line processes. Until now chemists have been able to mimic this type of approach only to synthesize peptides and oligonucleotides, creating simple amide (C–N) or phosphate (P–O) bonds. These authors emulate nature by creating a molecular assembly line through iterative reagent-controlled homologations of boronic esters. The process relies on the reactivity of α-lithioethyl tri-ispopropylbenzoate, which inserts into carbon–boron bonds with high fidelity and stereocontrol. Each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. They use this method to generate several organic molecules that contain ten contiguous, stereochemically defined methyl groups. This work is a step towards the rational design and synthesis of complex molecules with predictable shape.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13711</identifier><identifier>PMID: 25209797</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403 ; Analytical chemistry ; Binomial distribution ; Biosynthesis ; Boron ; Carbon ; Chemical research ; Chemical Sciences ; Chemical tests and reagents ; Chemistry Techniques, Synthetic - methods ; Chemistry Techniques, Synthetic - standards ; Esters ; Humanities and Social Sciences ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; multidisciplinary ; Organic chemistry ; Organic compounds ; Physiological aspects ; Polyketides - chemical synthesis ; Polyketides - chemistry ; Science ; Stereoisomers ; Synthesis</subject><ispartof>Nature (London), 2014-09, Vol.513 (7517), p.183-188</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 11, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c866t-e702c6472f07583277400e2f22603b601eed878614dca462d794adaa97da153f3</citedby><cites>FETCH-LOGICAL-c866t-e702c6472f07583277400e2f22603b601eed878614dca462d794adaa97da153f3</cites><orcidid>0000-0001-8182-9416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature13711$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature13711$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25209797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01140341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Burns, Matthew</creatorcontrib><creatorcontrib>Essafi, Stéphanie</creatorcontrib><creatorcontrib>Bame, Jessica R.</creatorcontrib><creatorcontrib>Bull, Stephanie P.</creatorcontrib><creatorcontrib>Webster, Matthew P.</creatorcontrib><creatorcontrib>Balieu, Sébastien</creatorcontrib><creatorcontrib>Dale, James W.</creatorcontrib><creatorcontrib>Butts, Craig P.</creatorcontrib><creatorcontrib>Harvey, Jeremy N.</creatorcontrib><creatorcontrib>Aggarwal, Varinder K.</creatorcontrib><title>Assembly-line synthesis of organic molecules with tailored shapes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-controlled homologation of a boronic ester. This process relies on the reactivity of α-lithioethyl tri-isopropylbenzoate, which inserts into carbon–boron bonds with exceptionally high fidelity and stereocontrol; each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. We used this method to generate organic molecules that contain ten contiguous, stereochemically defined methyl groups. Several stereoisomers were synthesized and shown to adopt different shapes—helical or linear—depending on the stereochemistry of the methyl groups. This work should facilitate the rational design of molecules with predictable shapes, which could have an impact in areas of molecular sciences in which bespoke molecules are required. The iterative, reagent-controlled homologation of a boronic ester is used to create an ‘assembly line’ capable of synthesizing organic molecules that contain ten contiguous, stereochemically defined methyl groups and which have different shapes depending on the stereochemistry of those groups. Assembly-line synthesis of defined complex molecules Biological systems have evolved sophisticated machinery for organic synthesis resembling molecular assembly-line processes. Until now chemists have been able to mimic this type of approach only to synthesize peptides and oligonucleotides, creating simple amide (C–N) or phosphate (P–O) bonds. These authors emulate nature by creating a molecular assembly line through iterative reagent-controlled homologations of boronic esters. The process relies on the reactivity of α-lithioethyl tri-ispopropylbenzoate, which inserts into carbon–boron bonds with high fidelity and stereocontrol. Each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. They use this method to generate several organic molecules that contain ten contiguous, stereochemically defined methyl groups. This work is a step towards the rational design and synthesis of complex molecules with predictable shape.</description><subject>639/638/403</subject><subject>Analytical chemistry</subject><subject>Binomial distribution</subject><subject>Biosynthesis</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemical research</subject><subject>Chemical Sciences</subject><subject>Chemical tests and reagents</subject><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Chemistry Techniques, Synthetic - standards</subject><subject>Esters</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Conformation</subject><subject>multidisciplinary</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Physiological aspects</subject><subject>Polyketides - chemical synthesis</subject><subject>Polyketides - chemistry</subject><subject>Science</subject><subject>Stereoisomers</subject><subject>Synthesis</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN001v1DAQBuAIgehSOHFHEZwqSBk7ju0coxXQSiuQoIij5XUmWVf52NoJsP8eV1tKVkpp5YMl5_HrUTQTRS8JnBJI5ftOD6NDkgpCHkULwgRPGJficbQAoDIBmfKj6Jn3lwCQEcGeRkc0o5CLXCyiovAe23WzSxrbYex33bBBb33cV3Hvat1ZE7d9g2Zs0Me_7LCJB22b3mEZ-43eon8ePal04_HFzX4cff_44WJ5lqy-fDpfFqvESM6HBAVQw5mgFYhMplQIBoC0opRDuuZAEEspJCesNJpxWoqc6VLrXJSaZGmVHkcn-9yNbtTW2Va7neq1VWfFSl2fASEMUkZ-kmDf7O3W9Vcj-kFd9qPrQnmKZJyK8Euk-Kdq3aCyXdUPTpvWeqMKHipilEH2X5VKmpIcgAWVzKgaO3S66TusbDg-SH2In-a_nvFma6_UNPRONE06nUFhldhaM1vqgy5MXzg5uBDMgL-HWo_eq_NvXw_D77PT3Ld32-Lix_LzYfL9eibbuN57h9VtixFQ12OmJmMW9Kub_hrXLZa39u9cBfBuD3z41NXoJg04k_cHHPclyw</recordid><startdate>20140911</startdate><enddate>20140911</enddate><creator>Burns, Matthew</creator><creator>Essafi, Stéphanie</creator><creator>Bame, Jessica R.</creator><creator>Bull, Stephanie P.</creator><creator>Webster, Matthew P.</creator><creator>Balieu, Sébastien</creator><creator>Dale, James W.</creator><creator>Butts, Craig P.</creator><creator>Harvey, Jeremy N.</creator><creator>Aggarwal, Varinder K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8182-9416</orcidid></search><sort><creationdate>20140911</creationdate><title>Assembly-line synthesis of organic molecules with tailored shapes</title><author>Burns, Matthew ; Essafi, Stéphanie ; Bame, Jessica R. ; Bull, Stephanie P. ; Webster, Matthew P. ; Balieu, Sébastien ; Dale, James W. ; Butts, Craig P. ; Harvey, Jeremy N. ; Aggarwal, Varinder K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c866t-e702c6472f07583277400e2f22603b601eed878614dca462d794adaa97da153f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/638/403</topic><topic>Analytical chemistry</topic><topic>Binomial distribution</topic><topic>Biosynthesis</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemical research</topic><topic>Chemical Sciences</topic><topic>Chemical tests and reagents</topic><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Chemistry Techniques, Synthetic - standards</topic><topic>Esters</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Conformation</topic><topic>multidisciplinary</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Physiological aspects</topic><topic>Polyketides - chemical synthesis</topic><topic>Polyketides - chemistry</topic><topic>Science</topic><topic>Stereoisomers</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burns, Matthew</creatorcontrib><creatorcontrib>Essafi, Stéphanie</creatorcontrib><creatorcontrib>Bame, Jessica R.</creatorcontrib><creatorcontrib>Bull, Stephanie P.</creatorcontrib><creatorcontrib>Webster, Matthew P.</creatorcontrib><creatorcontrib>Balieu, Sébastien</creatorcontrib><creatorcontrib>Dale, James W.</creatorcontrib><creatorcontrib>Butts, Craig P.</creatorcontrib><creatorcontrib>Harvey, Jeremy N.</creatorcontrib><creatorcontrib>Aggarwal, Varinder K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burns, Matthew</au><au>Essafi, Stéphanie</au><au>Bame, Jessica R.</au><au>Bull, Stephanie P.</au><au>Webster, Matthew P.</au><au>Balieu, Sébastien</au><au>Dale, James W.</au><au>Butts, Craig P.</au><au>Harvey, Jeremy N.</au><au>Aggarwal, Varinder K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly-line synthesis of organic molecules with tailored shapes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-09-11</date><risdate>2014</risdate><volume>513</volume><issue>7517</issue><spage>183</spage><epage>188</epage><pages>183-188</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Molecular ‘assembly lines’, in which organic molecules undergo iterative processes such as chain elongation and functional group manipulation, are found in many natural systems, including polyketide biosynthesis. Here we report the creation of such an assembly line using the iterative, reagent-controlled homologation of a boronic ester. This process relies on the reactivity of α-lithioethyl tri-isopropylbenzoate, which inserts into carbon–boron bonds with exceptionally high fidelity and stereocontrol; each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. We used this method to generate organic molecules that contain ten contiguous, stereochemically defined methyl groups. Several stereoisomers were synthesized and shown to adopt different shapes—helical or linear—depending on the stereochemistry of the methyl groups. This work should facilitate the rational design of molecules with predictable shapes, which could have an impact in areas of molecular sciences in which bespoke molecules are required. The iterative, reagent-controlled homologation of a boronic ester is used to create an ‘assembly line’ capable of synthesizing organic molecules that contain ten contiguous, stereochemically defined methyl groups and which have different shapes depending on the stereochemistry of those groups. Assembly-line synthesis of defined complex molecules Biological systems have evolved sophisticated machinery for organic synthesis resembling molecular assembly-line processes. Until now chemists have been able to mimic this type of approach only to synthesize peptides and oligonucleotides, creating simple amide (C–N) or phosphate (P–O) bonds. These authors emulate nature by creating a molecular assembly line through iterative reagent-controlled homologations of boronic esters. The process relies on the reactivity of α-lithioethyl tri-ispopropylbenzoate, which inserts into carbon–boron bonds with high fidelity and stereocontrol. Each chain-extension step generates a new boronic ester, which is immediately ready for further homologation. They use this method to generate several organic molecules that contain ten contiguous, stereochemically defined methyl groups. This work is a step towards the rational design and synthesis of complex molecules with predictable shape.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25209797</pmid><doi>10.1038/nature13711</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8182-9416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2014-09, Vol.513 (7517), p.183-188
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_01140341v1
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 639/638/403
Analytical chemistry
Binomial distribution
Biosynthesis
Boron
Carbon
Chemical research
Chemical Sciences
Chemical tests and reagents
Chemistry Techniques, Synthetic - methods
Chemistry Techniques, Synthetic - standards
Esters
Humanities and Social Sciences
Magnetic Resonance Spectroscopy
Molecular Conformation
multidisciplinary
Organic chemistry
Organic compounds
Physiological aspects
Polyketides - chemical synthesis
Polyketides - chemistry
Science
Stereoisomers
Synthesis
title Assembly-line synthesis of organic molecules with tailored shapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly-line%20synthesis%20of%20organic%20molecules%20with%20tailored%20shapes&rft.jtitle=Nature%20(London)&rft.au=Burns,%20Matthew&rft.date=2014-09-11&rft.volume=513&rft.issue=7517&rft.spage=183&rft.epage=188&rft.pages=183-188&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13711&rft_dat=%3Cgale_hal_p%3EA660142405%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562783687&rft_id=info:pmid/25209797&rft_galeid=A660142405&rfr_iscdi=true