Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device

We demonstrate the preparation of functional 'extremely thin absorber' solar cells consisting of massively parallel arrays of nanocylindrical, coaxial n-TiO 2 /i-Sb 2 S 3 /p-CuSCN junctions. Anodic alumina is used as an inert template that provides ordered pores of 80 nm diameter and 1-50...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (11), p.5971-5981
Hauptverfasser: Wu, Yanlin, Assaud, Loïc, Kryschi, Carola, Capon, Boris, Detavernier, Christophe, Santinacci, Lionel, Bachmann, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5981
container_issue 11
container_start_page 5971
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Wu, Yanlin
Assaud, Loïc
Kryschi, Carola
Capon, Boris
Detavernier, Christophe
Santinacci, Lionel
Bachmann, Julien
description We demonstrate the preparation of functional 'extremely thin absorber' solar cells consisting of massively parallel arrays of nanocylindrical, coaxial n-TiO 2 /i-Sb 2 S 3 /p-CuSCN junctions. Anodic alumina is used as an inert template that provides ordered pores of 80 nm diameter and 1-50 μm length. Atomic layer deposition (ALD) then coats pores of up to 20 μm with thin layers of the electron conductor and the intrinsic light absorber. The crystallization of the initially amorphous Sb 2 S 3 upon annealing is strongly promoted by an underlying crystalline TiO 2 layer. After the remaining pore volume is filled with the hole conductor by solution evaporation, the resulting coaxial p-i-n junctions display stable diode and photodiode electrical characteristics. A recombination timescale of 40 ms is extracted from impedance spectroscopy in open circuit conditions, whereas transient absorption spectroscopy indicates that holes are extracted from Sb 2 S 3 with a lifetime of 1 ns. Functional 'extremely thin absorber' solar cells consisting of parallel, nanocylindrical, concentric p-i-n heterojunctions are prepared by atomic layer deposition.
doi_str_mv 10.1039/c5ta00111k
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01130352v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677938092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3500a2947875f880e73272159e18ed24c4510721d985017c563ff7b9a7a7af433</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhVcIJKrSC3ckcwNEYLxexza3KAKKiMSlnK2J7W0Mjr3YTtT9E_xmXFKFG-PDzDx9eiP5dd1zCu8oMPXe8IoAlNKfj7qLHjgsxKCWj8-zlE-7q1J-QCsJsFTqovu9itXvU5xJOYTRW0ewECTB3-4qwW1Jeesy8ZHsmhJmkrJ12dm3xCS88xhIxJjMHHy02Zu2Y844lw9kym7CjNWnSDDaZlHd7cPe5tSOTLtU0zGFit4Q647euGfdkxFDcVcP_bL7_unjzfp6sfn2-ct6tVkYJvu6YBwAezUIKfgoJTjBetFTrhyVzvaDGTiFJlglOVBh-JKNo9gqFO2NA2OX3euT7w6DnrLfY551Qq-vVxt9r7VvZMB4f6SNfXVip5x-HVypeu-LcSFgdOlQNF0KoZgE1Tf0zQk1OZWS3Xj2pqDvM9JrfrP6m9HXBr88wbmYM_cvQz3ZsTEv_sewPyjUmcU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677938092</pqid></control><display><type>article</type><title>Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Yanlin ; Assaud, Loïc ; Kryschi, Carola ; Capon, Boris ; Detavernier, Christophe ; Santinacci, Lionel ; Bachmann, Julien</creator><creatorcontrib>Wu, Yanlin ; Assaud, Loïc ; Kryschi, Carola ; Capon, Boris ; Detavernier, Christophe ; Santinacci, Lionel ; Bachmann, Julien</creatorcontrib><description>We demonstrate the preparation of functional 'extremely thin absorber' solar cells consisting of massively parallel arrays of nanocylindrical, coaxial n-TiO 2 /i-Sb 2 S 3 /p-CuSCN junctions. Anodic alumina is used as an inert template that provides ordered pores of 80 nm diameter and 1-50 μm length. Atomic layer deposition (ALD) then coats pores of up to 20 μm with thin layers of the electron conductor and the intrinsic light absorber. The crystallization of the initially amorphous Sb 2 S 3 upon annealing is strongly promoted by an underlying crystalline TiO 2 layer. After the remaining pore volume is filled with the hole conductor by solution evaporation, the resulting coaxial p-i-n junctions display stable diode and photodiode electrical characteristics. A recombination timescale of 40 ms is extracted from impedance spectroscopy in open circuit conditions, whereas transient absorption spectroscopy indicates that holes are extracted from Sb 2 S 3 with a lifetime of 1 ns. Functional 'extremely thin absorber' solar cells consisting of parallel, nanocylindrical, concentric p-i-n heterojunctions are prepared by atomic layer deposition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c5ta00111k</identifier><language>eng</language><publisher>Royal Society of Chemistry</publisher><subject>Arrays ; Conductors (devices) ; Nanostructure ; P-i-n junctions ; Photovoltaic cells ; Physics ; Porosity ; Solar cells ; Sustainability ; Titanium dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (11), p.5971-5981</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3500a2947875f880e73272159e18ed24c4510721d985017c563ff7b9a7a7af433</citedby><cites>FETCH-LOGICAL-c382t-3500a2947875f880e73272159e18ed24c4510721d985017c563ff7b9a7a7af433</cites><orcidid>0000-0002-7250-0704 ; 0000-0002-2039-0590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01130352$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yanlin</creatorcontrib><creatorcontrib>Assaud, Loïc</creatorcontrib><creatorcontrib>Kryschi, Carola</creatorcontrib><creatorcontrib>Capon, Boris</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Santinacci, Lionel</creatorcontrib><creatorcontrib>Bachmann, Julien</creatorcontrib><title>Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>We demonstrate the preparation of functional 'extremely thin absorber' solar cells consisting of massively parallel arrays of nanocylindrical, coaxial n-TiO 2 /i-Sb 2 S 3 /p-CuSCN junctions. Anodic alumina is used as an inert template that provides ordered pores of 80 nm diameter and 1-50 μm length. Atomic layer deposition (ALD) then coats pores of up to 20 μm with thin layers of the electron conductor and the intrinsic light absorber. The crystallization of the initially amorphous Sb 2 S 3 upon annealing is strongly promoted by an underlying crystalline TiO 2 layer. After the remaining pore volume is filled with the hole conductor by solution evaporation, the resulting coaxial p-i-n junctions display stable diode and photodiode electrical characteristics. A recombination timescale of 40 ms is extracted from impedance spectroscopy in open circuit conditions, whereas transient absorption spectroscopy indicates that holes are extracted from Sb 2 S 3 with a lifetime of 1 ns. Functional 'extremely thin absorber' solar cells consisting of parallel, nanocylindrical, concentric p-i-n heterojunctions are prepared by atomic layer deposition.</description><subject>Arrays</subject><subject>Conductors (devices)</subject><subject>Nanostructure</subject><subject>P-i-n junctions</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Porosity</subject><subject>Solar cells</subject><subject>Sustainability</subject><subject>Titanium dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhVcIJKrSC3ckcwNEYLxexza3KAKKiMSlnK2J7W0Mjr3YTtT9E_xmXFKFG-PDzDx9eiP5dd1zCu8oMPXe8IoAlNKfj7qLHjgsxKCWj8-zlE-7q1J-QCsJsFTqovu9itXvU5xJOYTRW0ewECTB3-4qwW1Jeesy8ZHsmhJmkrJ12dm3xCS88xhIxJjMHHy02Zu2Y844lw9kym7CjNWnSDDaZlHd7cPe5tSOTLtU0zGFit4Q647euGfdkxFDcVcP_bL7_unjzfp6sfn2-ct6tVkYJvu6YBwAezUIKfgoJTjBetFTrhyVzvaDGTiFJlglOVBh-JKNo9gqFO2NA2OX3euT7w6DnrLfY551Qq-vVxt9r7VvZMB4f6SNfXVip5x-HVypeu-LcSFgdOlQNF0KoZgE1Tf0zQk1OZWS3Xj2pqDvM9JrfrP6m9HXBr88wbmYM_cvQz3ZsTEv_sewPyjUmcU</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wu, Yanlin</creator><creator>Assaud, Loïc</creator><creator>Kryschi, Carola</creator><creator>Capon, Boris</creator><creator>Detavernier, Christophe</creator><creator>Santinacci, Lionel</creator><creator>Bachmann, Julien</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7250-0704</orcidid><orcidid>https://orcid.org/0000-0002-2039-0590</orcidid></search><sort><creationdate>20150101</creationdate><title>Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device</title><author>Wu, Yanlin ; Assaud, Loïc ; Kryschi, Carola ; Capon, Boris ; Detavernier, Christophe ; Santinacci, Lionel ; Bachmann, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3500a2947875f880e73272159e18ed24c4510721d985017c563ff7b9a7a7af433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Conductors (devices)</topic><topic>Nanostructure</topic><topic>P-i-n junctions</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Porosity</topic><topic>Solar cells</topic><topic>Sustainability</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yanlin</creatorcontrib><creatorcontrib>Assaud, Loïc</creatorcontrib><creatorcontrib>Kryschi, Carola</creatorcontrib><creatorcontrib>Capon, Boris</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Santinacci, Lionel</creatorcontrib><creatorcontrib>Bachmann, Julien</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yanlin</au><au>Assaud, Loïc</au><au>Kryschi, Carola</au><au>Capon, Boris</au><au>Detavernier, Christophe</au><au>Santinacci, Lionel</au><au>Bachmann, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>11</issue><spage>5971</spage><epage>5981</epage><pages>5971-5981</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>We demonstrate the preparation of functional 'extremely thin absorber' solar cells consisting of massively parallel arrays of nanocylindrical, coaxial n-TiO 2 /i-Sb 2 S 3 /p-CuSCN junctions. Anodic alumina is used as an inert template that provides ordered pores of 80 nm diameter and 1-50 μm length. Atomic layer deposition (ALD) then coats pores of up to 20 μm with thin layers of the electron conductor and the intrinsic light absorber. The crystallization of the initially amorphous Sb 2 S 3 upon annealing is strongly promoted by an underlying crystalline TiO 2 layer. After the remaining pore volume is filled with the hole conductor by solution evaporation, the resulting coaxial p-i-n junctions display stable diode and photodiode electrical characteristics. A recombination timescale of 40 ms is extracted from impedance spectroscopy in open circuit conditions, whereas transient absorption spectroscopy indicates that holes are extracted from Sb 2 S 3 with a lifetime of 1 ns. Functional 'extremely thin absorber' solar cells consisting of parallel, nanocylindrical, concentric p-i-n heterojunctions are prepared by atomic layer deposition.</abstract><pub>Royal Society of Chemistry</pub><doi>10.1039/c5ta00111k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7250-0704</orcidid><orcidid>https://orcid.org/0000-0002-2039-0590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (11), p.5971-5981
issn 2050-7488
2050-7496
language eng
recordid cdi_hal_primary_oai_HAL_hal_01130352v1
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Arrays
Conductors (devices)
Nanostructure
P-i-n junctions
Photovoltaic cells
Physics
Porosity
Solar cells
Sustainability
Titanium dioxide
title Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimony%20sulfide%20as%20a%20light%20absorber%20in%20highly%20ordered,%20coaxial%20nanocylindrical%20arrays:%20preparation%20and%20integration%20into%20a%20photovoltaic%20device&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20Yanlin&rft.date=2015-01-01&rft.volume=3&rft.issue=11&rft.spage=5971&rft.epage=5981&rft.pages=5971-5981&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c5ta00111k&rft_dat=%3Cproquest_hal_p%3E1677938092%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677938092&rft_id=info:pmid/&rfr_iscdi=true