Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference

We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2015-04, Vol.119 (1-2), p.293-320
Hauptverfasser: Audoly, Basile, Seffen, Keith A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 1-2
container_start_page 293
container_title Journal of elasticity
container_volume 119
creator Audoly, Basile
Seffen, Keith A.
description We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, multiply-covered loop. Conversely, a multi-covered, overcurved metallic strip can unfold dynamically into a circular configuration having a lower covering index. We analyze these instabilities using a one-dimensional mechanical model for an elastic ribbon introduced recently (Dias and Audoly in J. Elast., 2014 ), which extends Sadowsky’s developable elastic ribbon model in the presence of natural curvature. Combining linear stability analyses and numerical computations of the post-buckled configurations, we classify the equilibria of the ribbon as a function of the ratio of its natural curvature to its actual curvature. Our ribbon model is formulated in close analogy with classical rod models; this allows us to adapt classical stability methods for rods to the case of a ribbon. The stability of a ribbon is found to differ significantly from that of an anisotropic rod: we attribute this difference to the fact that the tangent twisting modulus of a ribbon can be negative, in contrast to what is possible in the well-studied case of linearly elastic rods. The specific stability properties predicted by the curved ribbon model are confirmed by a finite element analysis of cylindrical shells having a small height-to-radius ratio.
doi_str_mv 10.1007/s10659-015-9520-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01128595v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3642560351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-540cca6bafca4282e3ecafb1bfbb45cabeb2f5fc2d36a0494228ecc99032a5de3</originalsourceid><addsrcrecordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShmqRJt_FN1yusF7w8h0l2otXYrkkr7L-3S0VE8Glg-M7hzBxCdjg74IyNDxNnhdIZ4yrTSrBssUJGXI3zTBQlXyUjlo9llqtcrZONlF4ZY7qUbETuTjr3Fqr6mTae3kDbRQhhQSdd_MQZPQuQ2srRhzZW83REH1-Q3lfWNjW9bmYY6DW8YaJATyvvMWLtcIuseQgJt7_nJnk6P3ucXGbT24uryfE0c1IXbaYkcw4KC96BFKXAHB14y623VioHFq3wyjsxywtgUkshSnROa5YLUDPMN8n-4PsCwcxj9Q5xYRqozOXx1Cx3jHNRKq0-ec_uDew8Nh8dpta8V8lhCFBj0yXDi1KNS674Et39g742Xaz7S3qqf6UWUuie4gPlYpNSRP-TgDOz7MMMffQhlFn2YRa9Rgya1LP1M8Zfzv-KvgA3lo0N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668192429</pqid></control><display><type>article</type><title>Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference</title><source>SpringerLink Journals - AutoHoldings</source><creator>Audoly, Basile ; Seffen, Keith A.</creator><creatorcontrib>Audoly, Basile ; Seffen, Keith A.</creatorcontrib><description>We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, multiply-covered loop. Conversely, a multi-covered, overcurved metallic strip can unfold dynamically into a circular configuration having a lower covering index. We analyze these instabilities using a one-dimensional mechanical model for an elastic ribbon introduced recently (Dias and Audoly in J. Elast., 2014 ), which extends Sadowsky’s developable elastic ribbon model in the presence of natural curvature. Combining linear stability analyses and numerical computations of the post-buckled configurations, we classify the equilibria of the ribbon as a function of the ratio of its natural curvature to its actual curvature. Our ribbon model is formulated in close analogy with classical rod models; this allows us to adapt classical stability methods for rods to the case of a ribbon. The stability of a ribbon is found to differ significantly from that of an anisotropic rod: we attribute this difference to the fact that the tangent twisting modulus of a ribbon can be negative, in contrast to what is possible in the well-studied case of linearly elastic rods. The specific stability properties predicted by the curved ribbon model are confirmed by a finite element analysis of cylindrical shells having a small height-to-radius ratio.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-015-9520-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Curvature ; Curved ; Engineering Sciences ; Fluid mechanics ; Mathematical analysis ; Mathematical models ; Mathematical Physics ; Mechanics ; Physics ; Physics and Astronomy ; Ribbons ; Rods ; Solid mechanics ; Stability ; Strip ; Structural mechanics ; Tapes (metallic)</subject><ispartof>Journal of elasticity, 2015-04, Vol.119 (1-2), p.293-320</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-540cca6bafca4282e3ecafb1bfbb45cabeb2f5fc2d36a0494228ecc99032a5de3</citedby><cites>FETCH-LOGICAL-c496t-540cca6bafca4282e3ecafb1bfbb45cabeb2f5fc2d36a0494228ecc99032a5de3</cites><orcidid>0000-0002-0534-1467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-015-9520-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-015-9520-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41466,42535,51296</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01128595$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Audoly, Basile</creatorcontrib><creatorcontrib>Seffen, Keith A.</creatorcontrib><title>Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, multiply-covered loop. Conversely, a multi-covered, overcurved metallic strip can unfold dynamically into a circular configuration having a lower covering index. We analyze these instabilities using a one-dimensional mechanical model for an elastic ribbon introduced recently (Dias and Audoly in J. Elast., 2014 ), which extends Sadowsky’s developable elastic ribbon model in the presence of natural curvature. Combining linear stability analyses and numerical computations of the post-buckled configurations, we classify the equilibria of the ribbon as a function of the ratio of its natural curvature to its actual curvature. Our ribbon model is formulated in close analogy with classical rod models; this allows us to adapt classical stability methods for rods to the case of a ribbon. The stability of a ribbon is found to differ significantly from that of an anisotropic rod: we attribute this difference to the fact that the tangent twisting modulus of a ribbon can be negative, in contrast to what is possible in the well-studied case of linearly elastic rods. The specific stability properties predicted by the curved ribbon model are confirmed by a finite element analysis of cylindrical shells having a small height-to-radius ratio.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Curvature</subject><subject>Curved</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Ribbons</subject><subject>Rods</subject><subject>Solid mechanics</subject><subject>Stability</subject><subject>Strip</subject><subject>Structural mechanics</subject><subject>Tapes (metallic)</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShmqRJt_FN1yusF7w8h0l2otXYrkkr7L-3S0VE8Glg-M7hzBxCdjg74IyNDxNnhdIZ4yrTSrBssUJGXI3zTBQlXyUjlo9llqtcrZONlF4ZY7qUbETuTjr3Fqr6mTae3kDbRQhhQSdd_MQZPQuQ2srRhzZW83REH1-Q3lfWNjW9bmYY6DW8YaJATyvvMWLtcIuseQgJt7_nJnk6P3ucXGbT24uryfE0c1IXbaYkcw4KC96BFKXAHB14y623VioHFq3wyjsxywtgUkshSnROa5YLUDPMN8n-4PsCwcxj9Q5xYRqozOXx1Cx3jHNRKq0-ec_uDew8Nh8dpta8V8lhCFBj0yXDi1KNS674Et39g742Xaz7S3qqf6UWUuie4gPlYpNSRP-TgDOz7MMMffQhlFn2YRa9Rgya1LP1M8Zfzv-KvgA3lo0N</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Audoly, Basile</creator><creator>Seffen, Keith A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0534-1467</orcidid></search><sort><creationdate>20150401</creationdate><title>Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference</title><author>Audoly, Basile ; Seffen, Keith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-540cca6bafca4282e3ecafb1bfbb45cabeb2f5fc2d36a0494228ecc99032a5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Curvature</topic><topic>Curved</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Ribbons</topic><topic>Rods</topic><topic>Solid mechanics</topic><topic>Stability</topic><topic>Strip</topic><topic>Structural mechanics</topic><topic>Tapes (metallic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audoly, Basile</creatorcontrib><creatorcontrib>Seffen, Keith A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audoly, Basile</au><au>Seffen, Keith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>119</volume><issue>1-2</issue><spage>293</spage><epage>320</epage><pages>293-320</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, multiply-covered loop. Conversely, a multi-covered, overcurved metallic strip can unfold dynamically into a circular configuration having a lower covering index. We analyze these instabilities using a one-dimensional mechanical model for an elastic ribbon introduced recently (Dias and Audoly in J. Elast., 2014 ), which extends Sadowsky’s developable elastic ribbon model in the presence of natural curvature. Combining linear stability analyses and numerical computations of the post-buckled configurations, we classify the equilibria of the ribbon as a function of the ratio of its natural curvature to its actual curvature. Our ribbon model is formulated in close analogy with classical rod models; this allows us to adapt classical stability methods for rods to the case of a ribbon. The stability of a ribbon is found to differ significantly from that of an anisotropic rod: we attribute this difference to the fact that the tangent twisting modulus of a ribbon can be negative, in contrast to what is possible in the well-studied case of linearly elastic rods. The specific stability properties predicted by the curved ribbon model are confirmed by a finite element analysis of cylindrical shells having a small height-to-radius ratio.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-015-9520-y</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-0534-1467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2015-04, Vol.119 (1-2), p.293-320
issn 0374-3535
1573-2681
language eng
recordid cdi_hal_primary_oai_HAL_hal_01128595v1
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Curvature
Curved
Engineering Sciences
Fluid mechanics
Mathematical analysis
Mathematical models
Mathematical Physics
Mechanics
Physics
Physics and Astronomy
Ribbons
Rods
Solid mechanics
Stability
Strip
Structural mechanics
Tapes (metallic)
title Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buckling%20of%20Naturally%20Curved%20Elastic%20Strips:%20The%20Ribbon%20Model%20Makes%20a%20Difference&rft.jtitle=Journal%20of%20elasticity&rft.au=Audoly,%20Basile&rft.date=2015-04-01&rft.volume=119&rft.issue=1-2&rft.spage=293&rft.epage=320&rft.pages=293-320&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-015-9520-y&rft_dat=%3Cproquest_hal_p%3E3642560351%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668192429&rft_id=info:pmid/&rfr_iscdi=true