Conjoint Use of Variables Clustering and PLS Structural Equations Modeling

In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis, we use clustering methods of variables. We illustrate the conjoint use of variables clustering and PLS structural equations modeling on dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stan, Valentina, Saporta, Gilbert
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue
container_start_page 235
container_title
container_volume
creator Stan, Valentina
Saporta, Gilbert
description In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis, we use clustering methods of variables. We illustrate the conjoint use of variables clustering and PLS structural equations modeling on data provided by PSA Company (Peugeot Citroën) on customers’ satisfaction. The data are satisfaction scores on 32 manifest variables given by 2,922 customers.
doi_str_mv 10.1007/978-3-540-32827-8_11
format Book Chapter
fullrecord <record><control><sourceid>hal_sprin</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01125749v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01125749v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1591-be53e782599e12a659573c07a51eae053b56e9760039cf3cf30127cd3a24b9e13</originalsourceid><addsrcrecordid>eNo1kMFOwzAMhoMQEjD6Bhxy5RBI4qZpjlM1GKgIpDGuUdpm0FGakbRIvD3pBpYly79-W_aH0CWj14xSeaNkToCIlBLgOZck14wdoSTKEMW9lh-j8_9GpKcoCWFLY6Qg0yw_Qw-F67eu7Qe8Dha7DX41vjVVZwMuujEM1rf9GzZ9g5_LFV4NfqyH0ZsOL75GM7SuD_jRNbaLrgt0sjFdsMlfnaH17eKlWJLy6e6-mJekZkIxUlkBVsZrlLKMm0woIaGm0ghmjaUCKpFZJTNKQdUbiEkZl3UDhqdVHIEZujrsfTed3vn20_gf7Uyrl_NSTxpljAuZqu_Jyw_esJsesV5Xzn0EzaieCOqISoOOfPSelp4Iwi9SU2FQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Conjoint Use of Variables Clustering and PLS Structural Equations Modeling</title><source>Springer Books</source><creator>Stan, Valentina ; Saporta, Gilbert</creator><contributor>Esposito Vinzi, Vincenzo ; Chin, Wynne W. ; Henseler, Jörg ; Wang, Huiwen</contributor><creatorcontrib>Stan, Valentina ; Saporta, Gilbert ; Esposito Vinzi, Vincenzo ; Chin, Wynne W. ; Henseler, Jörg ; Wang, Huiwen</creatorcontrib><description>In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis, we use clustering methods of variables. We illustrate the conjoint use of variables clustering and PLS structural equations modeling on data provided by PSA Company (Peugeot Citroën) on customers’ satisfaction. The data are satisfaction scores on 32 manifest variables given by 2,922 customers.</description><identifier>ISBN: 3540328254</identifier><identifier>ISBN: 9783540328254</identifier><identifier>EISBN: 9783540328278</identifier><identifier>EISBN: 3540328270</identifier><identifier>DOI: 10.1007/978-3-540-32827-8_11</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complete Linkage ; General Satisfaction ; Latent Variable ; Manifest Variable ; Mathematics ; Statistics ; Variable Cluster</subject><ispartof>Handbook of Partial Least Squares, 2010, p.235-246</ispartof><rights>Springer-Verlag Berlin Heidelberg 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1591-be53e782599e12a659573c07a51eae053b56e9760039cf3cf30127cd3a24b9e13</citedby><orcidid>0000-0002-3406-5887</orcidid><relation>Springer Handbooks of Computational Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-32827-8_11$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-32827-8_11$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,779,780,784,793,885,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01125749$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Esposito Vinzi, Vincenzo</contributor><contributor>Chin, Wynne W.</contributor><contributor>Henseler, Jörg</contributor><contributor>Wang, Huiwen</contributor><creatorcontrib>Stan, Valentina</creatorcontrib><creatorcontrib>Saporta, Gilbert</creatorcontrib><title>Conjoint Use of Variables Clustering and PLS Structural Equations Modeling</title><title>Handbook of Partial Least Squares</title><description>In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis, we use clustering methods of variables. We illustrate the conjoint use of variables clustering and PLS structural equations modeling on data provided by PSA Company (Peugeot Citroën) on customers’ satisfaction. The data are satisfaction scores on 32 manifest variables given by 2,922 customers.</description><subject>Complete Linkage</subject><subject>General Satisfaction</subject><subject>Latent Variable</subject><subject>Manifest Variable</subject><subject>Mathematics</subject><subject>Statistics</subject><subject>Variable Cluster</subject><isbn>3540328254</isbn><isbn>9783540328254</isbn><isbn>9783540328278</isbn><isbn>3540328270</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2010</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kMFOwzAMhoMQEjD6Bhxy5RBI4qZpjlM1GKgIpDGuUdpm0FGakbRIvD3pBpYly79-W_aH0CWj14xSeaNkToCIlBLgOZck14wdoSTKEMW9lh-j8_9GpKcoCWFLY6Qg0yw_Qw-F67eu7Qe8Dha7DX41vjVVZwMuujEM1rf9GzZ9g5_LFV4NfqyH0ZsOL75GM7SuD_jRNbaLrgt0sjFdsMlfnaH17eKlWJLy6e6-mJekZkIxUlkBVsZrlLKMm0woIaGm0ghmjaUCKpFZJTNKQdUbiEkZl3UDhqdVHIEZujrsfTed3vn20_gf7Uyrl_NSTxpljAuZqu_Jyw_esJsesV5Xzn0EzaieCOqISoOOfPSelp4Iwi9SU2FQ</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Stan, Valentina</creator><creator>Saporta, Gilbert</creator><general>Springer Berlin Heidelberg</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3406-5887</orcidid></search><sort><creationdate>2010</creationdate><title>Conjoint Use of Variables Clustering and PLS Structural Equations Modeling</title><author>Stan, Valentina ; Saporta, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1591-be53e782599e12a659573c07a51eae053b56e9760039cf3cf30127cd3a24b9e13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Complete Linkage</topic><topic>General Satisfaction</topic><topic>Latent Variable</topic><topic>Manifest Variable</topic><topic>Mathematics</topic><topic>Statistics</topic><topic>Variable Cluster</topic><toplevel>online_resources</toplevel><creatorcontrib>Stan, Valentina</creatorcontrib><creatorcontrib>Saporta, Gilbert</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stan, Valentina</au><au>Saporta, Gilbert</au><au>Esposito Vinzi, Vincenzo</au><au>Chin, Wynne W.</au><au>Henseler, Jörg</au><au>Wang, Huiwen</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Conjoint Use of Variables Clustering and PLS Structural Equations Modeling</atitle><btitle>Handbook of Partial Least Squares</btitle><seriestitle>Springer Handbooks of Computational Statistics</seriestitle><date>2010</date><risdate>2010</risdate><spage>235</spage><epage>246</epage><pages>235-246</pages><isbn>3540328254</isbn><isbn>9783540328254</isbn><eisbn>9783540328278</eisbn><eisbn>3540328270</eisbn><abstract>In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis, we use clustering methods of variables. We illustrate the conjoint use of variables clustering and PLS structural equations modeling on data provided by PSA Company (Peugeot Citroën) on customers’ satisfaction. The data are satisfaction scores on 32 manifest variables given by 2,922 customers.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-32827-8_11</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3406-5887</orcidid></addata></record>
fulltext fulltext
identifier ISBN: 3540328254
ispartof Handbook of Partial Least Squares, 2010, p.235-246
issn
language eng
recordid cdi_hal_primary_oai_HAL_hal_01125749v1
source Springer Books
subjects Complete Linkage
General Satisfaction
Latent Variable
Manifest Variable
Mathematics
Statistics
Variable Cluster
title Conjoint Use of Variables Clustering and PLS Structural Equations Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Conjoint%20Use%20of%20Variables%20Clustering%20and%20PLS%20Structural%20Equations%20Modeling&rft.btitle=Handbook%20of%20Partial%20Least%20Squares&rft.au=Stan,%20Valentina&rft.date=2010&rft.spage=235&rft.epage=246&rft.pages=235-246&rft.isbn=3540328254&rft.isbn_list=9783540328254&rft_id=info:doi/10.1007/978-3-540-32827-8_11&rft_dat=%3Chal_sprin%3Eoai_HAL_hal_01125749v1%3C/hal_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540328278&rft.eisbn_list=3540328270&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true