Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation
Pathogens are considered to drive ecological and evolutionary dynamics of plant populations, but we lack data measuring the population-level consequences of infection in wild plant–pathogen interactions. Moreover, while it is often assumed that offseason environmental conditions drive seasonal decli...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2015-02, Vol.205 (3), p.1142-1152 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1152 |
---|---|
container_issue | 3 |
container_start_page | 1142 |
container_title | The New phytologist |
container_volume | 205 |
creator | Penczykowski, Rachel M. Walker, Emily Soubeyrand, Samuel Laine, Anna‐Liisa |
description | Pathogens are considered to drive ecological and evolutionary dynamics of plant populations, but we lack data measuring the population-level consequences of infection in wild plant–pathogen interactions. Moreover, while it is often assumed that offseason environmental conditions drive seasonal declines in pathogen population size, little is known about how offseason environmental conditions impact the survival of pathogen resting stages, and how critical the offseason is for the next season's epidemic.
The fungal pathogen Podosphaera plantaginis persists as a dynamic metapopulation in the large network of Plantago lanceolata host populations. Here, we analyze long-term data to measure the spatial synchrony of epidemics and consequences of infection for over 4000 host populations. Using a theoretical model, we study whether large-scale environmental change could synchronize disease occurrence across the metapopulation.
During 2001–2013 exposure to freezing decreased, while pathogen extinction–colonization– persistence rates became more synchronized. Simulations of a theoretical model suggest that increasingly favorable winter conditions for pathogen survival could drive such synchronization. Our data also show that infection decreases host population growth.
These results confirm that mild winter conditions increase pathogen overwintering success and thus increase disease prevalence across the metapopulation. Further, we conclude that the pathogen can drive host population growth in the Plantago–Podosphaera system. |
doi_str_mv | 10.1111/nph.13145 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01123954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.205.3.1142</jstor_id><sourcerecordid>newphytologist.205.3.1142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-1bca87c261d7f34ff0ef357691eaab37ccc825ad2b59bc4907beea0b037697be3</originalsourceid><addsrcrecordid>eNqNkc-O0zAQhy0EYsvCgRdAlrjAIV2P_ybH1QooUgUcQOJmHMdpXRI7xAmr3ngH3pAnwaW7RUIC4YtH1jefZvxD6DGQJeRzEYbtEhhwcQctgMuqKIGpu2hBCC0LyeXHM_QgpR0hpBKS3kdnVLCSSgkL9Gntw2cfNvjah8mN2MbQ-MnHkPAU8eg2uTQdbnxyJjnc7IPpvU3YB2xyT9fgoTNh-vHt-2Cmbdy4gHs3mSEOc2cOnofoXmu65B7d3Ofow8sX769Wxfrtq9dXl-vC8lKJAmprSmWphEa1jLctcS0TSlbgjKmZstaWVJiG1qKqLa-Iqp0zpCYsM7lm5-j50bs1nR5G35txr6PxenW51oc3AkBZJfhXyOyzIzuM8cvs0qR7n6zr8iYuzkmDlIQDUdX_oCJbeSlpRp_-ge7iPObfS5oKYGWpKId_USA5z-kpAr-3sWNMaXTtaSUg-pC5zpnrX5ln9smNca5715zI25AzcHEEcl5u_3eTfvNudatcHjt2aYrjqSO462G7n2IXNz4PTonQLDs4ZT8Bfr_GLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644469701</pqid></control><display><type>article</type><title>Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Penczykowski, Rachel M. ; Walker, Emily ; Soubeyrand, Samuel ; Laine, Anna‐Liisa</creator><creatorcontrib>Penczykowski, Rachel M. ; Walker, Emily ; Soubeyrand, Samuel ; Laine, Anna‐Liisa</creatorcontrib><description>Pathogens are considered to drive ecological and evolutionary dynamics of plant populations, but we lack data measuring the population-level consequences of infection in wild plant–pathogen interactions. Moreover, while it is often assumed that offseason environmental conditions drive seasonal declines in pathogen population size, little is known about how offseason environmental conditions impact the survival of pathogen resting stages, and how critical the offseason is for the next season's epidemic.
The fungal pathogen Podosphaera plantaginis persists as a dynamic metapopulation in the large network of Plantago lanceolata host populations. Here, we analyze long-term data to measure the spatial synchrony of epidemics and consequences of infection for over 4000 host populations. Using a theoretical model, we study whether large-scale environmental change could synchronize disease occurrence across the metapopulation.
During 2001–2013 exposure to freezing decreased, while pathogen extinction–colonization– persistence rates became more synchronized. Simulations of a theoretical model suggest that increasingly favorable winter conditions for pathogen survival could drive such synchronization. Our data also show that infection decreases host population growth.
These results confirm that mild winter conditions increase pathogen overwintering success and thus increase disease prevalence across the metapopulation. Further, we conclude that the pathogen can drive host population growth in the Plantago–Podosphaera system.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13145</identifier><identifier>PMID: 25382661</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Agricultural sciences ; Ascomycota - physiology ; Colonization ; Diseases ; Dynamics ; Environmental changes ; Environmental conditions ; Epidemics ; epidemiology ; Freezing ; Host plants ; Host-Pathogen Interactions ; host–parasite interactions ; Infections ; Life Sciences ; Linear Models ; Metapopulations ; Model testing ; Models, Biological ; Overwintering ; Pathogens ; Plant Diseases - microbiology ; Plant population ; Plant populations ; Plantago - growth & development ; Plantago - microbiology ; Plantago lanceolata ; Plantago–Podosphaera system ; plant–pathogen ; Population decline ; Population Dynamics ; Population growth ; Population number ; powdery mildew ; Resting stages ; resting structure ; Seasons ; spatial synchrony ; Species extinction ; Survival ; Synchronism ; Synchronization ; Winter</subject><ispartof>The New phytologist, 2015-02, Vol.205 (3), p.1142-1152</ispartof><rights>2015 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2015 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-1bca87c261d7f34ff0ef357691eaab37ccc825ad2b59bc4907beea0b037697be3</citedby><cites>FETCH-LOGICAL-c4875-1bca87c261d7f34ff0ef357691eaab37ccc825ad2b59bc4907beea0b037697be3</cites><orcidid>0000-0003-2447-3067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.205.3.1142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.205.3.1142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1416,1432,27922,27923,45572,45573,46407,46831,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25382661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01123954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Penczykowski, Rachel M.</creatorcontrib><creatorcontrib>Walker, Emily</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Laine, Anna‐Liisa</creatorcontrib><title>Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Pathogens are considered to drive ecological and evolutionary dynamics of plant populations, but we lack data measuring the population-level consequences of infection in wild plant–pathogen interactions. Moreover, while it is often assumed that offseason environmental conditions drive seasonal declines in pathogen population size, little is known about how offseason environmental conditions impact the survival of pathogen resting stages, and how critical the offseason is for the next season's epidemic.
The fungal pathogen Podosphaera plantaginis persists as a dynamic metapopulation in the large network of Plantago lanceolata host populations. Here, we analyze long-term data to measure the spatial synchrony of epidemics and consequences of infection for over 4000 host populations. Using a theoretical model, we study whether large-scale environmental change could synchronize disease occurrence across the metapopulation.
During 2001–2013 exposure to freezing decreased, while pathogen extinction–colonization– persistence rates became more synchronized. Simulations of a theoretical model suggest that increasingly favorable winter conditions for pathogen survival could drive such synchronization. Our data also show that infection decreases host population growth.
These results confirm that mild winter conditions increase pathogen overwintering success and thus increase disease prevalence across the metapopulation. Further, we conclude that the pathogen can drive host population growth in the Plantago–Podosphaera system.</description><subject>Agricultural sciences</subject><subject>Ascomycota - physiology</subject><subject>Colonization</subject><subject>Diseases</subject><subject>Dynamics</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Epidemics</subject><subject>epidemiology</subject><subject>Freezing</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions</subject><subject>host–parasite interactions</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Metapopulations</subject><subject>Model testing</subject><subject>Models, Biological</subject><subject>Overwintering</subject><subject>Pathogens</subject><subject>Plant Diseases - microbiology</subject><subject>Plant population</subject><subject>Plant populations</subject><subject>Plantago - growth & development</subject><subject>Plantago - microbiology</subject><subject>Plantago lanceolata</subject><subject>Plantago–Podosphaera system</subject><subject>plant–pathogen</subject><subject>Population decline</subject><subject>Population Dynamics</subject><subject>Population growth</subject><subject>Population number</subject><subject>powdery mildew</subject><subject>Resting stages</subject><subject>resting structure</subject><subject>Seasons</subject><subject>spatial synchrony</subject><subject>Species extinction</subject><subject>Survival</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Winter</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc-O0zAQhy0EYsvCgRdAlrjAIV2P_ybH1QooUgUcQOJmHMdpXRI7xAmr3ngH3pAnwaW7RUIC4YtH1jefZvxD6DGQJeRzEYbtEhhwcQctgMuqKIGpu2hBCC0LyeXHM_QgpR0hpBKS3kdnVLCSSgkL9Gntw2cfNvjah8mN2MbQ-MnHkPAU8eg2uTQdbnxyJjnc7IPpvU3YB2xyT9fgoTNh-vHt-2Cmbdy4gHs3mSEOc2cOnofoXmu65B7d3Ofow8sX769Wxfrtq9dXl-vC8lKJAmprSmWphEa1jLctcS0TSlbgjKmZstaWVJiG1qKqLa-Iqp0zpCYsM7lm5-j50bs1nR5G35txr6PxenW51oc3AkBZJfhXyOyzIzuM8cvs0qR7n6zr8iYuzkmDlIQDUdX_oCJbeSlpRp_-ge7iPObfS5oKYGWpKId_USA5z-kpAr-3sWNMaXTtaSUg-pC5zpnrX5ln9smNca5715zI25AzcHEEcl5u_3eTfvNudatcHjt2aYrjqSO462G7n2IXNz4PTonQLDs4ZT8Bfr_GLQ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Penczykowski, Rachel M.</creator><creator>Walker, Emily</creator><creator>Soubeyrand, Samuel</creator><creator>Laine, Anna‐Liisa</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid></search><sort><creationdate>201502</creationdate><title>Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation</title><author>Penczykowski, Rachel M. ; Walker, Emily ; Soubeyrand, Samuel ; Laine, Anna‐Liisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-1bca87c261d7f34ff0ef357691eaab37ccc825ad2b59bc4907beea0b037697be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural sciences</topic><topic>Ascomycota - physiology</topic><topic>Colonization</topic><topic>Diseases</topic><topic>Dynamics</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Epidemics</topic><topic>epidemiology</topic><topic>Freezing</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions</topic><topic>host–parasite interactions</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Metapopulations</topic><topic>Model testing</topic><topic>Models, Biological</topic><topic>Overwintering</topic><topic>Pathogens</topic><topic>Plant Diseases - microbiology</topic><topic>Plant population</topic><topic>Plant populations</topic><topic>Plantago - growth & development</topic><topic>Plantago - microbiology</topic><topic>Plantago lanceolata</topic><topic>Plantago–Podosphaera system</topic><topic>plant–pathogen</topic><topic>Population decline</topic><topic>Population Dynamics</topic><topic>Population growth</topic><topic>Population number</topic><topic>powdery mildew</topic><topic>Resting stages</topic><topic>resting structure</topic><topic>Seasons</topic><topic>spatial synchrony</topic><topic>Species extinction</topic><topic>Survival</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penczykowski, Rachel M.</creatorcontrib><creatorcontrib>Walker, Emily</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Laine, Anna‐Liisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penczykowski, Rachel M.</au><au>Walker, Emily</au><au>Soubeyrand, Samuel</au><au>Laine, Anna‐Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2015-02</date><risdate>2015</risdate><volume>205</volume><issue>3</issue><spage>1142</spage><epage>1152</epage><pages>1142-1152</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Pathogens are considered to drive ecological and evolutionary dynamics of plant populations, but we lack data measuring the population-level consequences of infection in wild plant–pathogen interactions. Moreover, while it is often assumed that offseason environmental conditions drive seasonal declines in pathogen population size, little is known about how offseason environmental conditions impact the survival of pathogen resting stages, and how critical the offseason is for the next season's epidemic.
The fungal pathogen Podosphaera plantaginis persists as a dynamic metapopulation in the large network of Plantago lanceolata host populations. Here, we analyze long-term data to measure the spatial synchrony of epidemics and consequences of infection for over 4000 host populations. Using a theoretical model, we study whether large-scale environmental change could synchronize disease occurrence across the metapopulation.
During 2001–2013 exposure to freezing decreased, while pathogen extinction–colonization– persistence rates became more synchronized. Simulations of a theoretical model suggest that increasingly favorable winter conditions for pathogen survival could drive such synchronization. Our data also show that infection decreases host population growth.
These results confirm that mild winter conditions increase pathogen overwintering success and thus increase disease prevalence across the metapopulation. Further, we conclude that the pathogen can drive host population growth in the Plantago–Podosphaera system.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>25382661</pmid><doi>10.1111/nph.13145</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2015-02, Vol.205 (3), p.1142-1152 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01123954v1 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Agricultural sciences Ascomycota - physiology Colonization Diseases Dynamics Environmental changes Environmental conditions Epidemics epidemiology Freezing Host plants Host-Pathogen Interactions host–parasite interactions Infections Life Sciences Linear Models Metapopulations Model testing Models, Biological Overwintering Pathogens Plant Diseases - microbiology Plant population Plant populations Plantago - growth & development Plantago - microbiology Plantago lanceolata Plantago–Podosphaera system plant–pathogen Population decline Population Dynamics Population growth Population number powdery mildew Resting stages resting structure Seasons spatial synchrony Species extinction Survival Synchronism Synchronization Winter |
title | Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20winter%20conditions%20to%20regional%20disease%20dynamics%20in%20a%20wild%20plant%E2%80%93pathogen%20metapopulation&rft.jtitle=The%20New%20phytologist&rft.au=Penczykowski,%20Rachel%20M.&rft.date=2015-02&rft.volume=205&rft.issue=3&rft.spage=1142&rft.epage=1152&rft.pages=1142-1152&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13145&rft_dat=%3Cjstor_hal_p%3Enewphytologist.205.3.1142%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644469701&rft_id=info:pmid/25382661&rft_jstor_id=newphytologist.205.3.1142&rfr_iscdi=true |