Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch

A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (41), p.22775-22783
Hauptverfasser: Massaad, J, Coppel, Y, Sliwa, M, Kahn, M L, Coudret, C, Gauffre, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22783
container_issue 41
container_start_page 22775
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Massaad, J
Coppel, Y
Sliwa, M
Kahn, M L
Coudret, C
Gauffre, F
description A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.
doi_str_mv 10.1039/c4cp03537b
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01113483v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567053160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8e9fcb9e157407f976c77d542a72443f8024c1c636fb318294702dc454abd633</originalsourceid><addsrcrecordid>eNo90F1LwzAUBuAgipvTG3-A9FKFak6TNO2lFnXCwCG7D2maukibzKSd7N_buY-rHHIeXjgvQteAHwCT_FFRtcKEEV6eoDHQlMQ5zujpcebpCF2E8I0xBgbkHI0SlpAMOIzR53zpOqec7bxrIldHTd8aq4PStouMdf5LWqMiK61TfhM62YRobWQkbXTYta7Rqm-kj8Kv6dTyEp3VA9NX-3eCFq8vi2Iazz7e3ounWaxIAl2c6bxWZa6BcYp5nfNUcV4xmkieUErqDCdUgUpJWpcEsiSnHCeVoozKskoJmaC7XexSNmLlTSv9RjhpxPRpJrZ_GAAIzcgaBnu7syvvfnodOtGa4cSmkVa7PghgKceMQIoHer-jyrsQvK6P2YDFtm5R0GL-X_fzgG_2uX3Z6upID_2SPxiNeb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567053160</pqid></control><display><type>article</type><title>Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Massaad, J ; Coppel, Y ; Sliwa, M ; Kahn, M L ; Coudret, C ; Gauffre, F</creator><creatorcontrib>Massaad, J ; Coppel, Y ; Sliwa, M ; Kahn, M L ; Coudret, C ; Gauffre, F</creatorcontrib><description>A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp03537b</identifier><identifier>PMID: 25238171</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (41), p.22775-22783</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8e9fcb9e157407f976c77d542a72443f8024c1c636fb318294702dc454abd633</citedby><cites>FETCH-LOGICAL-c321t-8e9fcb9e157407f976c77d542a72443f8024c1c636fb318294702dc454abd633</cites><orcidid>0000-0003-2835-3556 ; 0000-0003-0970-4082 ; 0000-0001-7334-5112 ; 0000-0003-3079-5759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25238171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01113483$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Massaad, J</creatorcontrib><creatorcontrib>Coppel, Y</creatorcontrib><creatorcontrib>Sliwa, M</creatorcontrib><creatorcontrib>Kahn, M L</creatorcontrib><creatorcontrib>Coudret, C</creatorcontrib><creatorcontrib>Gauffre, F</creatorcontrib><title>Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.</description><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90F1LwzAUBuAgipvTG3-A9FKFak6TNO2lFnXCwCG7D2maukibzKSd7N_buY-rHHIeXjgvQteAHwCT_FFRtcKEEV6eoDHQlMQ5zujpcebpCF2E8I0xBgbkHI0SlpAMOIzR53zpOqec7bxrIldHTd8aq4PStouMdf5LWqMiK61TfhM62YRobWQkbXTYta7Rqm-kj8Kv6dTyEp3VA9NX-3eCFq8vi2Iazz7e3ounWaxIAl2c6bxWZa6BcYp5nfNUcV4xmkieUErqDCdUgUpJWpcEsiSnHCeVoozKskoJmaC7XexSNmLlTSv9RjhpxPRpJrZ_GAAIzcgaBnu7syvvfnodOtGa4cSmkVa7PghgKceMQIoHer-jyrsQvK6P2YDFtm5R0GL-X_fzgG_2uX3Z6upID_2SPxiNeb4</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Massaad, J</creator><creator>Coppel, Y</creator><creator>Sliwa, M</creator><creator>Kahn, M L</creator><creator>Coudret, C</creator><creator>Gauffre, F</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2835-3556</orcidid><orcidid>https://orcid.org/0000-0003-0970-4082</orcidid><orcidid>https://orcid.org/0000-0001-7334-5112</orcidid><orcidid>https://orcid.org/0000-0003-3079-5759</orcidid></search><sort><creationdate>20140101</creationdate><title>Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch</title><author>Massaad, J ; Coppel, Y ; Sliwa, M ; Kahn, M L ; Coudret, C ; Gauffre, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8e9fcb9e157407f976c77d542a72443f8024c1c636fb318294702dc454abd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaad, J</creatorcontrib><creatorcontrib>Coppel, Y</creatorcontrib><creatorcontrib>Sliwa, M</creatorcontrib><creatorcontrib>Kahn, M L</creatorcontrib><creatorcontrib>Coudret, C</creatorcontrib><creatorcontrib>Gauffre, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaad, J</au><au>Coppel, Y</au><au>Sliwa, M</au><au>Kahn, M L</au><au>Coudret, C</au><au>Gauffre, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>41</issue><spage>22775</spage><epage>22783</epage><pages>22775-22783</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>25238171</pmid><doi>10.1039/c4cp03537b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2835-3556</orcidid><orcidid>https://orcid.org/0000-0003-0970-4082</orcidid><orcidid>https://orcid.org/0000-0001-7334-5112</orcidid><orcidid>https://orcid.org/0000-0003-3079-5759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (41), p.22775-22783
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_01113483v1
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Chemical Sciences
or physical chemistry
Theoretical and
title Photocontrol of luminescent inorganic nanocrystals via an organic molecular switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocontrol%20of%20luminescent%20inorganic%20nanocrystals%20via%20an%20organic%20molecular%20switch&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Massaad,%20J&rft.date=2014-01-01&rft.volume=16&rft.issue=41&rft.spage=22775&rft.epage=22783&rft.pages=22775-22783&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp03537b&rft_dat=%3Cproquest_hal_p%3E1567053160%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567053160&rft_id=info:pmid/25238171&rfr_iscdi=true