Celsr3 is required in motor neurons to steer their axons in the hindlimb
In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a fu...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2014-09, Vol.17 (9), p.1171-1179 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 9 |
container_start_page | 1171 |
container_title | Nature neuroscience |
container_volume | 17 |
creator | Chai, Guoliang Zhou, Libing Manto, Mario Helmbacher, Françoise Clotman, Frédéric Goffinet, André M Tissir, Fadel |
description | In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways.
The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb. |
doi_str_mv | 10.1038/nn.3784 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01102580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382150457</galeid><sourcerecordid>A382150457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</originalsourceid><addsrcrecordid>eNqFkttqGzEQhpfS0qRp6RsUQS_aXNjV-XBpTFIHDIUeroWsHdsKu1Ii7Zb07avFaVKHQtGFNKNvfukfpmneEjwnmOlPMc6Z0vxZc0oElzOiqHxez9iomaRCnjSvSrnGGCuhzcvmhAqCtSHstFktoSuZoVBQhtsxZGhRiKhPQ8oowphTLGhIqAwAGQ17CBm5uylZqRqifYhtF_rN6-bF1nUF3tzvZ82Py4vvy9Vs_eXz1XKxnnmh8TCTWgmuvFEb3mKKpVSsNR6MocoIrjWnmmKlKGm50cqB115sqGNMYMIF9eysOT_o7l1nb3LoXf5lkwt2tVjbKYcJwbS-9ZNU9uOBvcnpdoQy2D4UD13nIqSxWCIlJ2b6w_9RIbSgSjNc0fdP0Os05lhNV0EhGWVEkkdq5zqwIW7TkJ2fRO2CaUoE5kJVav4Pqq4W-uBThG2o-aOC86OCygxwN-zcWIq9-vb1mP1wYH1OpWTYPvSLYDuNjY3RTmNTyXf3lsZND-0D92dOHttT6lXcQf7L8xOt34rewq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656323161</pqid></control><display><type>article</type><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</creator><creatorcontrib>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</creatorcontrib><description>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways.
The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3784</identifier><identifier>PMID: 25108913</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 38 ; 42 ; 631/378/1959 ; 631/378/2571/2576 ; 631/378/340 ; 64/60 ; 82 ; Animal Genetics and Genomics ; Animals ; Axons ; Axons - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Cells, Cultured ; Cellular Biology ; Clubfoot - embryology ; Clubfoot - genetics ; Ephrin-A2 - metabolism ; Ephrin-A5 - metabolism ; Female ; Frizzled Receptors - metabolism ; Genetic aspects ; Genotype & phenotype ; Green Fluorescent Proteins - genetics ; HEK293 Cells ; Hindlimb - abnormalities ; Hindlimb - innervation ; Humans ; Life Sciences ; Locomotion ; Male ; Mice, Knockout ; Motor neurons ; Motor Neurons - physiology ; Motor Neurons - ultrastructure ; Nervous system ; Neurobiology ; Neurosciences ; Peroneal Nerve - cytology ; Peroneal Nerve - embryology ; Peroneal Nerve - physiology ; Pregnancy ; Properties ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Signal Transduction - physiology ; Spinal cord ; Tibial Nerve - cytology ; Tibial Nerve - embryology ; Tibial Nerve - physiology</subject><ispartof>Nature neuroscience, 2014-09, Vol.17 (9), p.1171-1179</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</citedby><cites>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</cites><orcidid>0000-0001-6822-1246 ; 0000-0003-1687-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3784$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3784$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25108913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01102580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chai, Guoliang</creatorcontrib><creatorcontrib>Zhou, Libing</creatorcontrib><creatorcontrib>Manto, Mario</creatorcontrib><creatorcontrib>Helmbacher, Françoise</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Goffinet, André M</creatorcontrib><creatorcontrib>Tissir, Fadel</creatorcontrib><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways.
The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</description><subject>13</subject><subject>38</subject><subject>42</subject><subject>631/378/1959</subject><subject>631/378/2571/2576</subject><subject>631/378/340</subject><subject>64/60</subject><subject>82</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Clubfoot - embryology</subject><subject>Clubfoot - genetics</subject><subject>Ephrin-A2 - metabolism</subject><subject>Ephrin-A5 - metabolism</subject><subject>Female</subject><subject>Frizzled Receptors - metabolism</subject><subject>Genetic aspects</subject><subject>Genotype & phenotype</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>HEK293 Cells</subject><subject>Hindlimb - abnormalities</subject><subject>Hindlimb - innervation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Locomotion</subject><subject>Male</subject><subject>Mice, Knockout</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor Neurons - ultrastructure</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Peroneal Nerve - cytology</subject><subject>Peroneal Nerve - embryology</subject><subject>Peroneal Nerve - physiology</subject><subject>Pregnancy</subject><subject>Properties</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Spinal cord</subject><subject>Tibial Nerve - cytology</subject><subject>Tibial Nerve - embryology</subject><subject>Tibial Nerve - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkttqGzEQhpfS0qRp6RsUQS_aXNjV-XBpTFIHDIUeroWsHdsKu1Ii7Zb07avFaVKHQtGFNKNvfukfpmneEjwnmOlPMc6Z0vxZc0oElzOiqHxez9iomaRCnjSvSrnGGCuhzcvmhAqCtSHstFktoSuZoVBQhtsxZGhRiKhPQ8oowphTLGhIqAwAGQ17CBm5uylZqRqifYhtF_rN6-bF1nUF3tzvZ82Py4vvy9Vs_eXz1XKxnnmh8TCTWgmuvFEb3mKKpVSsNR6MocoIrjWnmmKlKGm50cqB115sqGNMYMIF9eysOT_o7l1nb3LoXf5lkwt2tVjbKYcJwbS-9ZNU9uOBvcnpdoQy2D4UD13nIqSxWCIlJ2b6w_9RIbSgSjNc0fdP0Os05lhNV0EhGWVEkkdq5zqwIW7TkJ2fRO2CaUoE5kJVav4Pqq4W-uBThG2o-aOC86OCygxwN-zcWIq9-vb1mP1wYH1OpWTYPvSLYDuNjY3RTmNTyXf3lsZND-0D92dOHttT6lXcQf7L8xOt34rewq8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chai, Guoliang</creator><creator>Zhou, Libing</creator><creator>Manto, Mario</creator><creator>Helmbacher, Françoise</creator><creator>Clotman, Frédéric</creator><creator>Goffinet, André M</creator><creator>Tissir, Fadel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6822-1246</orcidid><orcidid>https://orcid.org/0000-0003-1687-9665</orcidid></search><sort><creationdate>20140901</creationdate><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><author>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>38</topic><topic>42</topic><topic>631/378/1959</topic><topic>631/378/2571/2576</topic><topic>631/378/340</topic><topic>64/60</topic><topic>82</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Clubfoot - embryology</topic><topic>Clubfoot - genetics</topic><topic>Ephrin-A2 - metabolism</topic><topic>Ephrin-A5 - metabolism</topic><topic>Female</topic><topic>Frizzled Receptors - metabolism</topic><topic>Genetic aspects</topic><topic>Genotype & phenotype</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>HEK293 Cells</topic><topic>Hindlimb - abnormalities</topic><topic>Hindlimb - innervation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Locomotion</topic><topic>Male</topic><topic>Mice, Knockout</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor Neurons - ultrastructure</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Peroneal Nerve - cytology</topic><topic>Peroneal Nerve - embryology</topic><topic>Peroneal Nerve - physiology</topic><topic>Pregnancy</topic><topic>Properties</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Spinal cord</topic><topic>Tibial Nerve - cytology</topic><topic>Tibial Nerve - embryology</topic><topic>Tibial Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Guoliang</creatorcontrib><creatorcontrib>Zhou, Libing</creatorcontrib><creatorcontrib>Manto, Mario</creatorcontrib><creatorcontrib>Helmbacher, Françoise</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Goffinet, André M</creatorcontrib><creatorcontrib>Tissir, Fadel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Guoliang</au><au>Zhou, Libing</au><au>Manto, Mario</au><au>Helmbacher, Françoise</au><au>Clotman, Frédéric</au><au>Goffinet, André M</au><au>Tissir, Fadel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Celsr3 is required in motor neurons to steer their axons in the hindlimb</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>9</issue><spage>1171</spage><epage>1179</epage><pages>1171-1179</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways.
The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25108913</pmid><doi>10.1038/nn.3784</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6822-1246</orcidid><orcidid>https://orcid.org/0000-0003-1687-9665</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2014-09, Vol.17 (9), p.1171-1179 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01102580v1 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13 38 42 631/378/1959 631/378/2571/2576 631/378/340 64/60 82 Animal Genetics and Genomics Animals Axons Axons - physiology Behavioral Sciences Biological Techniques Biomedicine Cadherins Cadherins - genetics Cadherins - metabolism Cells, Cultured Cellular Biology Clubfoot - embryology Clubfoot - genetics Ephrin-A2 - metabolism Ephrin-A5 - metabolism Female Frizzled Receptors - metabolism Genetic aspects Genotype & phenotype Green Fluorescent Proteins - genetics HEK293 Cells Hindlimb - abnormalities Hindlimb - innervation Humans Life Sciences Locomotion Male Mice, Knockout Motor neurons Motor Neurons - physiology Motor Neurons - ultrastructure Nervous system Neurobiology Neurosciences Peroneal Nerve - cytology Peroneal Nerve - embryology Peroneal Nerve - physiology Pregnancy Properties Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Signal Transduction - physiology Spinal cord Tibial Nerve - cytology Tibial Nerve - embryology Tibial Nerve - physiology |
title | Celsr3 is required in motor neurons to steer their axons in the hindlimb |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Celsr3%20is%20required%20in%20motor%20neurons%20to%20steer%20their%20axons%20in%20the%20hindlimb&rft.jtitle=Nature%20neuroscience&rft.au=Chai,%20Guoliang&rft.date=2014-09-01&rft.volume=17&rft.issue=9&rft.spage=1171&rft.epage=1179&rft.pages=1171-1179&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3784&rft_dat=%3Cgale_hal_p%3EA382150457%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656323161&rft_id=info:pmid/25108913&rft_galeid=A382150457&rfr_iscdi=true |