Celsr3 is required in motor neurons to steer their axons in the hindlimb

In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2014-09, Vol.17 (9), p.1171-1179
Hauptverfasser: Chai, Guoliang, Zhou, Libing, Manto, Mario, Helmbacher, Françoise, Clotman, Frédéric, Goffinet, André M, Tissir, Fadel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 9
container_start_page 1171
container_title Nature neuroscience
container_volume 17
creator Chai, Guoliang
Zhou, Libing
Manto, Mario
Helmbacher, Françoise
Clotman, Frédéric
Goffinet, André M
Tissir, Fadel
description In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways. The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.
doi_str_mv 10.1038/nn.3784
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01102580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382150457</galeid><sourcerecordid>A382150457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</originalsourceid><addsrcrecordid>eNqFkttqGzEQhpfS0qRp6RsUQS_aXNjV-XBpTFIHDIUeroWsHdsKu1Ii7Zb07avFaVKHQtGFNKNvfukfpmneEjwnmOlPMc6Z0vxZc0oElzOiqHxez9iomaRCnjSvSrnGGCuhzcvmhAqCtSHstFktoSuZoVBQhtsxZGhRiKhPQ8oowphTLGhIqAwAGQ17CBm5uylZqRqifYhtF_rN6-bF1nUF3tzvZ82Py4vvy9Vs_eXz1XKxnnmh8TCTWgmuvFEb3mKKpVSsNR6MocoIrjWnmmKlKGm50cqB115sqGNMYMIF9eysOT_o7l1nb3LoXf5lkwt2tVjbKYcJwbS-9ZNU9uOBvcnpdoQy2D4UD13nIqSxWCIlJ2b6w_9RIbSgSjNc0fdP0Os05lhNV0EhGWVEkkdq5zqwIW7TkJ2fRO2CaUoE5kJVav4Pqq4W-uBThG2o-aOC86OCygxwN-zcWIq9-vb1mP1wYH1OpWTYPvSLYDuNjY3RTmNTyXf3lsZND-0D92dOHttT6lXcQf7L8xOt34rewq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656323161</pqid></control><display><type>article</type><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</creator><creatorcontrib>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</creatorcontrib><description>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways. The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3784</identifier><identifier>PMID: 25108913</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 38 ; 42 ; 631/378/1959 ; 631/378/2571/2576 ; 631/378/340 ; 64/60 ; 82 ; Animal Genetics and Genomics ; Animals ; Axons ; Axons - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Cells, Cultured ; Cellular Biology ; Clubfoot - embryology ; Clubfoot - genetics ; Ephrin-A2 - metabolism ; Ephrin-A5 - metabolism ; Female ; Frizzled Receptors - metabolism ; Genetic aspects ; Genotype &amp; phenotype ; Green Fluorescent Proteins - genetics ; HEK293 Cells ; Hindlimb - abnormalities ; Hindlimb - innervation ; Humans ; Life Sciences ; Locomotion ; Male ; Mice, Knockout ; Motor neurons ; Motor Neurons - physiology ; Motor Neurons - ultrastructure ; Nervous system ; Neurobiology ; Neurosciences ; Peroneal Nerve - cytology ; Peroneal Nerve - embryology ; Peroneal Nerve - physiology ; Pregnancy ; Properties ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Signal Transduction - physiology ; Spinal cord ; Tibial Nerve - cytology ; Tibial Nerve - embryology ; Tibial Nerve - physiology</subject><ispartof>Nature neuroscience, 2014-09, Vol.17 (9), p.1171-1179</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</citedby><cites>FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</cites><orcidid>0000-0001-6822-1246 ; 0000-0003-1687-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3784$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3784$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25108913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01102580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chai, Guoliang</creatorcontrib><creatorcontrib>Zhou, Libing</creatorcontrib><creatorcontrib>Manto, Mario</creatorcontrib><creatorcontrib>Helmbacher, Françoise</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Goffinet, André M</creatorcontrib><creatorcontrib>Tissir, Fadel</creatorcontrib><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways. The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</description><subject>13</subject><subject>38</subject><subject>42</subject><subject>631/378/1959</subject><subject>631/378/2571/2576</subject><subject>631/378/340</subject><subject>64/60</subject><subject>82</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Clubfoot - embryology</subject><subject>Clubfoot - genetics</subject><subject>Ephrin-A2 - metabolism</subject><subject>Ephrin-A5 - metabolism</subject><subject>Female</subject><subject>Frizzled Receptors - metabolism</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>HEK293 Cells</subject><subject>Hindlimb - abnormalities</subject><subject>Hindlimb - innervation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Locomotion</subject><subject>Male</subject><subject>Mice, Knockout</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor Neurons - ultrastructure</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Peroneal Nerve - cytology</subject><subject>Peroneal Nerve - embryology</subject><subject>Peroneal Nerve - physiology</subject><subject>Pregnancy</subject><subject>Properties</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Spinal cord</subject><subject>Tibial Nerve - cytology</subject><subject>Tibial Nerve - embryology</subject><subject>Tibial Nerve - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkttqGzEQhpfS0qRp6RsUQS_aXNjV-XBpTFIHDIUeroWsHdsKu1Ii7Zb07avFaVKHQtGFNKNvfukfpmneEjwnmOlPMc6Z0vxZc0oElzOiqHxez9iomaRCnjSvSrnGGCuhzcvmhAqCtSHstFktoSuZoVBQhtsxZGhRiKhPQ8oowphTLGhIqAwAGQ17CBm5uylZqRqifYhtF_rN6-bF1nUF3tzvZ82Py4vvy9Vs_eXz1XKxnnmh8TCTWgmuvFEb3mKKpVSsNR6MocoIrjWnmmKlKGm50cqB115sqGNMYMIF9eysOT_o7l1nb3LoXf5lkwt2tVjbKYcJwbS-9ZNU9uOBvcnpdoQy2D4UD13nIqSxWCIlJ2b6w_9RIbSgSjNc0fdP0Os05lhNV0EhGWVEkkdq5zqwIW7TkJ2fRO2CaUoE5kJVav4Pqq4W-uBThG2o-aOC86OCygxwN-zcWIq9-vb1mP1wYH1OpWTYPvSLYDuNjY3RTmNTyXf3lsZND-0D92dOHttT6lXcQf7L8xOt34rewq8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chai, Guoliang</creator><creator>Zhou, Libing</creator><creator>Manto, Mario</creator><creator>Helmbacher, Françoise</creator><creator>Clotman, Frédéric</creator><creator>Goffinet, André M</creator><creator>Tissir, Fadel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6822-1246</orcidid><orcidid>https://orcid.org/0000-0003-1687-9665</orcidid></search><sort><creationdate>20140901</creationdate><title>Celsr3 is required in motor neurons to steer their axons in the hindlimb</title><author>Chai, Guoliang ; Zhou, Libing ; Manto, Mario ; Helmbacher, Françoise ; Clotman, Frédéric ; Goffinet, André M ; Tissir, Fadel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-687547c97b4d0206673d9ce992795488428207721d4987aec8c5b2a33501452c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>38</topic><topic>42</topic><topic>631/378/1959</topic><topic>631/378/2571/2576</topic><topic>631/378/340</topic><topic>64/60</topic><topic>82</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Clubfoot - embryology</topic><topic>Clubfoot - genetics</topic><topic>Ephrin-A2 - metabolism</topic><topic>Ephrin-A5 - metabolism</topic><topic>Female</topic><topic>Frizzled Receptors - metabolism</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>HEK293 Cells</topic><topic>Hindlimb - abnormalities</topic><topic>Hindlimb - innervation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Locomotion</topic><topic>Male</topic><topic>Mice, Knockout</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor Neurons - ultrastructure</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Peroneal Nerve - cytology</topic><topic>Peroneal Nerve - embryology</topic><topic>Peroneal Nerve - physiology</topic><topic>Pregnancy</topic><topic>Properties</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Spinal cord</topic><topic>Tibial Nerve - cytology</topic><topic>Tibial Nerve - embryology</topic><topic>Tibial Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Guoliang</creatorcontrib><creatorcontrib>Zhou, Libing</creatorcontrib><creatorcontrib>Manto, Mario</creatorcontrib><creatorcontrib>Helmbacher, Françoise</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Goffinet, André M</creatorcontrib><creatorcontrib>Tissir, Fadel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Guoliang</au><au>Zhou, Libing</au><au>Manto, Mario</au><au>Helmbacher, Françoise</au><au>Clotman, Frédéric</au><au>Goffinet, André M</au><au>Tissir, Fadel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Celsr3 is required in motor neurons to steer their axons in the hindlimb</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>9</issue><spage>1171</spage><epage>1179</epage><pages>1171-1179</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>In this study, the authors show that Celsr3 and Fzd3 interact in motor neurons to cooperatively direct axon guidance to target muscles in the periphery. In addition, they find that loss of Celsr3 or Fzd3 function also impairs axonal responses to ephrinA reverse, attractive signaling, suggesting a functional interaction between these guidance pathways. The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell–derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25108913</pmid><doi>10.1038/nn.3784</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6822-1246</orcidid><orcidid>https://orcid.org/0000-0003-1687-9665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2014-09, Vol.17 (9), p.1171-1179
issn 1097-6256
1546-1726
language eng
recordid cdi_hal_primary_oai_HAL_hal_01102580v1
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13
38
42
631/378/1959
631/378/2571/2576
631/378/340
64/60
82
Animal Genetics and Genomics
Animals
Axons
Axons - physiology
Behavioral Sciences
Biological Techniques
Biomedicine
Cadherins
Cadherins - genetics
Cadherins - metabolism
Cells, Cultured
Cellular Biology
Clubfoot - embryology
Clubfoot - genetics
Ephrin-A2 - metabolism
Ephrin-A5 - metabolism
Female
Frizzled Receptors - metabolism
Genetic aspects
Genotype & phenotype
Green Fluorescent Proteins - genetics
HEK293 Cells
Hindlimb - abnormalities
Hindlimb - innervation
Humans
Life Sciences
Locomotion
Male
Mice, Knockout
Motor neurons
Motor Neurons - physiology
Motor Neurons - ultrastructure
Nervous system
Neurobiology
Neurosciences
Peroneal Nerve - cytology
Peroneal Nerve - embryology
Peroneal Nerve - physiology
Pregnancy
Properties
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Signal Transduction - physiology
Spinal cord
Tibial Nerve - cytology
Tibial Nerve - embryology
Tibial Nerve - physiology
title Celsr3 is required in motor neurons to steer their axons in the hindlimb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Celsr3%20is%20required%20in%20motor%20neurons%20to%20steer%20their%20axons%20in%20the%20hindlimb&rft.jtitle=Nature%20neuroscience&rft.au=Chai,%20Guoliang&rft.date=2014-09-01&rft.volume=17&rft.issue=9&rft.spage=1171&rft.epage=1179&rft.pages=1171-1179&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3784&rft_dat=%3Cgale_hal_p%3EA382150457%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656323161&rft_id=info:pmid/25108913&rft_galeid=A382150457&rfr_iscdi=true