A benchmarking of machine learning techniques for solar radiation forecasting in an insular context
•A benchmarking of supervised machine learning methods is proposed.•For hour ahead solar forecasting, the methods slightly improve the simple models.•The performance of the methods is better in case of unstable sky conditions.•The methods start to outperform simple models for horizons greater than 1...
Gespeichert in:
Veröffentlicht in: | Solar energy 2015-02, Vol.112, p.446-457 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | |
container_start_page | 446 |
container_title | Solar energy |
container_volume | 112 |
creator | Lauret, Philippe Voyant, Cyril Soubdhan, Ted David, Mathieu Poggi, Philippe |
description | •A benchmarking of supervised machine learning methods is proposed.•For hour ahead solar forecasting, the methods slightly improve the simple models.•The performance of the methods is better in case of unstable sky conditions.•The methods start to outperform simple models for horizons greater than 1h.
In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on persistence of the GHI and persistence of the clear sky index (denoted herein scaled persistence model). The models are calibrated and validated with data from three French islands: Corsica (41.91°N; 8.73°E), Guadeloupe (16.26°N; 61.51°W) and Reunion (21.34°S; 55.49°E). The main findings of this work are, that for hour ahead solar forecasting, the machine learning techniques slightly improve the performances exhibited by the linear AR and the scaled persistence model. However, the improvement appears to be more pronounced in case of unstable sky conditions. These nonlinear techniques start to outperform their simple counterparts for forecasting horizons greater than 1h. |
doi_str_mv | 10.1016/j.solener.2014.12.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01101564v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X14006057</els_id><sourcerecordid>3584156961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3087fac12777ebc02af133d2fcf7579f20cc1e6f156e7314cd61ca9cce10e1693</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grDgycOumexH2pOUolYoeFHwFtLZiU2tiSbbov_ehIpXLxmYvPPOvA9jF8Ar4NBdr6voN-QoVIJDU4GoUjlgI2gklCBaechGnNfjkk_EyzE7iXHNOUgYyxHDabEkh6t3Hd6sey28Kd41rqyjYkM6uNwbCFfOfm4pFsaHIi3ToQi6t3qw3uUeoY5DllpXaJfeuM0a9G6gr-GMHRm9iXT-W0_Z893t02xeLh7vH2bTRYkNjIey5mNpNIKQUtISudAG6roXBo1s5cQIjgjUGWg7kjU02HeAeoJIwAm6SX3Krva-K71RH8GmTN_Ka6vm04XKPQ6JV9s1O0jay732I_icbFBrvw0unaega0XTybbNju1ehcHHGMj82QJXmb1aq1_2KrNXINKSJs3d7Ocoxd3Z9BvRJszU28RqUL23_zj8APF1kIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652467559</pqid></control><display><type>article</type><title>A benchmarking of machine learning techniques for solar radiation forecasting in an insular context</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lauret, Philippe ; Voyant, Cyril ; Soubdhan, Ted ; David, Mathieu ; Poggi, Philippe</creator><creatorcontrib>Lauret, Philippe ; Voyant, Cyril ; Soubdhan, Ted ; David, Mathieu ; Poggi, Philippe</creatorcontrib><description>•A benchmarking of supervised machine learning methods is proposed.•For hour ahead solar forecasting, the methods slightly improve the simple models.•The performance of the methods is better in case of unstable sky conditions.•The methods start to outperform simple models for horizons greater than 1h.
In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on persistence of the GHI and persistence of the clear sky index (denoted herein scaled persistence model). The models are calibrated and validated with data from three French islands: Corsica (41.91°N; 8.73°E), Guadeloupe (16.26°N; 61.51°W) and Reunion (21.34°S; 55.49°E). The main findings of this work are, that for hour ahead solar forecasting, the machine learning techniques slightly improve the performances exhibited by the linear AR and the scaled persistence model. However, the improvement appears to be more pronounced in case of unstable sky conditions. These nonlinear techniques start to outperform their simple counterparts for forecasting horizons greater than 1h.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2014.12.014</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial intelligence ; Benchmarks ; Forecasting ; Intraday solar forecasting ; Machine learning techniques ; Neural networks ; Normal distribution ; Sciences of the Universe ; Solar radiation ; Statistical models ; Ultraviolet radiation</subject><ispartof>Solar energy, 2015-02, Vol.112, p.446-457</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Feb 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3087fac12777ebc02af133d2fcf7579f20cc1e6f156e7314cd61ca9cce10e1693</citedby><cites>FETCH-LOGICAL-c418t-3087fac12777ebc02af133d2fcf7579f20cc1e6f156e7314cd61ca9cce10e1693</cites><orcidid>0000-0003-2959-6146 ; 0000-0002-6402-8438 ; 0000-0003-0242-7377 ; 0000-0002-7382-1294 ; 0000-0003-2574-0745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2014.12.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01101564$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauret, Philippe</creatorcontrib><creatorcontrib>Voyant, Cyril</creatorcontrib><creatorcontrib>Soubdhan, Ted</creatorcontrib><creatorcontrib>David, Mathieu</creatorcontrib><creatorcontrib>Poggi, Philippe</creatorcontrib><title>A benchmarking of machine learning techniques for solar radiation forecasting in an insular context</title><title>Solar energy</title><description>•A benchmarking of supervised machine learning methods is proposed.•For hour ahead solar forecasting, the methods slightly improve the simple models.•The performance of the methods is better in case of unstable sky conditions.•The methods start to outperform simple models for horizons greater than 1h.
In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on persistence of the GHI and persistence of the clear sky index (denoted herein scaled persistence model). The models are calibrated and validated with data from three French islands: Corsica (41.91°N; 8.73°E), Guadeloupe (16.26°N; 61.51°W) and Reunion (21.34°S; 55.49°E). The main findings of this work are, that for hour ahead solar forecasting, the machine learning techniques slightly improve the performances exhibited by the linear AR and the scaled persistence model. However, the improvement appears to be more pronounced in case of unstable sky conditions. These nonlinear techniques start to outperform their simple counterparts for forecasting horizons greater than 1h.</description><subject>Artificial intelligence</subject><subject>Benchmarks</subject><subject>Forecasting</subject><subject>Intraday solar forecasting</subject><subject>Machine learning techniques</subject><subject>Neural networks</subject><subject>Normal distribution</subject><subject>Sciences of the Universe</subject><subject>Solar radiation</subject><subject>Statistical models</subject><subject>Ultraviolet radiation</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grDgycOumexH2pOUolYoeFHwFtLZiU2tiSbbov_ehIpXLxmYvPPOvA9jF8Ar4NBdr6voN-QoVIJDU4GoUjlgI2gklCBaechGnNfjkk_EyzE7iXHNOUgYyxHDabEkh6t3Hd6sey28Kd41rqyjYkM6uNwbCFfOfm4pFsaHIi3ToQi6t3qw3uUeoY5DllpXaJfeuM0a9G6gr-GMHRm9iXT-W0_Z893t02xeLh7vH2bTRYkNjIey5mNpNIKQUtISudAG6roXBo1s5cQIjgjUGWg7kjU02HeAeoJIwAm6SX3Krva-K71RH8GmTN_Ka6vm04XKPQ6JV9s1O0jay732I_icbFBrvw0unaega0XTybbNju1ehcHHGMj82QJXmb1aq1_2KrNXINKSJs3d7Ocoxd3Z9BvRJszU28RqUL23_zj8APF1kIc</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Lauret, Philippe</creator><creator>Voyant, Cyril</creator><creator>Soubdhan, Ted</creator><creator>David, Mathieu</creator><creator>Poggi, Philippe</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2959-6146</orcidid><orcidid>https://orcid.org/0000-0002-6402-8438</orcidid><orcidid>https://orcid.org/0000-0003-0242-7377</orcidid><orcidid>https://orcid.org/0000-0002-7382-1294</orcidid><orcidid>https://orcid.org/0000-0003-2574-0745</orcidid></search><sort><creationdate>201502</creationdate><title>A benchmarking of machine learning techniques for solar radiation forecasting in an insular context</title><author>Lauret, Philippe ; Voyant, Cyril ; Soubdhan, Ted ; David, Mathieu ; Poggi, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3087fac12777ebc02af133d2fcf7579f20cc1e6f156e7314cd61ca9cce10e1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial intelligence</topic><topic>Benchmarks</topic><topic>Forecasting</topic><topic>Intraday solar forecasting</topic><topic>Machine learning techniques</topic><topic>Neural networks</topic><topic>Normal distribution</topic><topic>Sciences of the Universe</topic><topic>Solar radiation</topic><topic>Statistical models</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauret, Philippe</creatorcontrib><creatorcontrib>Voyant, Cyril</creatorcontrib><creatorcontrib>Soubdhan, Ted</creatorcontrib><creatorcontrib>David, Mathieu</creatorcontrib><creatorcontrib>Poggi, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauret, Philippe</au><au>Voyant, Cyril</au><au>Soubdhan, Ted</au><au>David, Mathieu</au><au>Poggi, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A benchmarking of machine learning techniques for solar radiation forecasting in an insular context</atitle><jtitle>Solar energy</jtitle><date>2015-02</date><risdate>2015</risdate><volume>112</volume><spage>446</spage><epage>457</epage><pages>446-457</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>•A benchmarking of supervised machine learning methods is proposed.•For hour ahead solar forecasting, the methods slightly improve the simple models.•The performance of the methods is better in case of unstable sky conditions.•The methods start to outperform simple models for horizons greater than 1h.
In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on persistence of the GHI and persistence of the clear sky index (denoted herein scaled persistence model). The models are calibrated and validated with data from three French islands: Corsica (41.91°N; 8.73°E), Guadeloupe (16.26°N; 61.51°W) and Reunion (21.34°S; 55.49°E). The main findings of this work are, that for hour ahead solar forecasting, the machine learning techniques slightly improve the performances exhibited by the linear AR and the scaled persistence model. However, the improvement appears to be more pronounced in case of unstable sky conditions. These nonlinear techniques start to outperform their simple counterparts for forecasting horizons greater than 1h.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2014.12.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2959-6146</orcidid><orcidid>https://orcid.org/0000-0002-6402-8438</orcidid><orcidid>https://orcid.org/0000-0003-0242-7377</orcidid><orcidid>https://orcid.org/0000-0002-7382-1294</orcidid><orcidid>https://orcid.org/0000-0003-2574-0745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2015-02, Vol.112, p.446-457 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01101564v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Artificial intelligence Benchmarks Forecasting Intraday solar forecasting Machine learning techniques Neural networks Normal distribution Sciences of the Universe Solar radiation Statistical models Ultraviolet radiation |
title | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20benchmarking%20of%20machine%20learning%20techniques%20for%20solar%20radiation%20forecasting%20in%20an%20insular%20context&rft.jtitle=Solar%20energy&rft.au=Lauret,%20Philippe&rft.date=2015-02&rft.volume=112&rft.spage=446&rft.epage=457&rft.pages=446-457&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2014.12.014&rft_dat=%3Cproquest_hal_p%3E3584156961%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652467559&rft_id=info:pmid/&rft_els_id=S0038092X14006057&rfr_iscdi=true |