Application of non-negative matrix factorization to LC/MS data

Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2016-06, Vol.123, p.75-83
Hauptverfasser: Rapin, Jérémy, Souloumiac, Antoine, Bobin, Jérôme, Larue, Anthony, Junot, Chistophe, Ouethrani, Minale, Starck, Jean-Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue
container_start_page 75
container_title Signal processing
container_volume 123
creator Rapin, Jérémy
Souloumiac, Antoine
Bobin, Jérôme
Larue, Anthony
Junot, Chistophe
Ouethrani, Minale
Starck, Jean-Luc
description Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data are however very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this paper, we propose an adaptation of a state-of-the-art NMF algorithms so as to specifically be able to deal with LC/MS data, by using a non-stationary noise model and a stochastic term. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. The results of these experiments highlight the significant improvement obtained by our adaptation over other NMF algorithms.
doi_str_mv 10.1016/j.sigpro.2015.12.014
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01099079v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168415004417</els_id><sourcerecordid>1816012488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f691eb9120c4adfe4d5f174b58dc7644a3d387c05900833a96a043522a8821083</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgywpD0znESZ6lUVUCRihiA2XIdp7hK42C7FfDrSRTEyHS6p--90z1CrhESBMxnu8SbbedsQgGzBGkCyE7IBHlB4yLLilMy6bEsxpyzc3Lh_Q4AMM1hQuaLrmuMksHYNrJ11No2bvW234862svgzGdUSxWsM98jFGy0Xs6eXqJKBnlJzmrZeH31O6fk7f7udbmK188Pj8vFOlYMyxDXeYl6UyIFxWRVa1ZlNRZsk_FKFTljMq1SXijISgCeprLMJbA0o1RyTrGXpuR2zH2Xjeic2Uv3Jaw0YrVYi0EDhLKEojzSnr0Z2b6Rj4P2QeyNV7ppZKvtwQvkmANSxodYNqLKWe-drv-yEcRQrdiJsVoxVCuQ9odYb5uPNt2_fDTaCa-MbpWujNMqiMqa_wN-ALgagWI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816012488</pqid></control><display><type>article</type><title>Application of non-negative matrix factorization to LC/MS data</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rapin, Jérémy ; Souloumiac, Antoine ; Bobin, Jérôme ; Larue, Anthony ; Junot, Chistophe ; Ouethrani, Minale ; Starck, Jean-Luc</creator><creatorcontrib>Rapin, Jérémy ; Souloumiac, Antoine ; Bobin, Jérôme ; Larue, Anthony ; Junot, Chistophe ; Ouethrani, Minale ; Starck, Jean-Luc</creatorcontrib><description>Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data are however very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this paper, we propose an adaptation of a state-of-the-art NMF algorithms so as to specifically be able to deal with LC/MS data, by using a non-stationary noise model and a stochastic term. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. The results of these experiments highlight the significant improvement obtained by our adaptation over other NMF algorithms.</description><identifier>ISSN: 0165-1684</identifier><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1872-7557</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.sigpro.2015.12.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptation ; Algorithms ; BSS ; Data Analysis, Statistics and Probability ; Engineering Sciences ; Factorization ; LC/MS ; Liquids ; Machine Learning ; Mass spectroscopy ; Mathematics ; Multiplicative noise ; NMF ; Noise ; Numerical Analysis ; Physics ; Signal and Image processing ; Sparsity ; Spectrometry ; Statistics</subject><ispartof>Signal processing, 2016-06, Vol.123, p.75-83</ispartof><rights>2016 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f691eb9120c4adfe4d5f174b58dc7644a3d387c05900833a96a043522a8821083</citedby><cites>FETCH-LOGICAL-c419t-f691eb9120c4adfe4d5f174b58dc7644a3d387c05900833a96a043522a8821083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2015.12.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01099079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rapin, Jérémy</creatorcontrib><creatorcontrib>Souloumiac, Antoine</creatorcontrib><creatorcontrib>Bobin, Jérôme</creatorcontrib><creatorcontrib>Larue, Anthony</creatorcontrib><creatorcontrib>Junot, Chistophe</creatorcontrib><creatorcontrib>Ouethrani, Minale</creatorcontrib><creatorcontrib>Starck, Jean-Luc</creatorcontrib><title>Application of non-negative matrix factorization to LC/MS data</title><title>Signal processing</title><description>Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data are however very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this paper, we propose an adaptation of a state-of-the-art NMF algorithms so as to specifically be able to deal with LC/MS data, by using a non-stationary noise model and a stochastic term. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. The results of these experiments highlight the significant improvement obtained by our adaptation over other NMF algorithms.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>BSS</subject><subject>Data Analysis, Statistics and Probability</subject><subject>Engineering Sciences</subject><subject>Factorization</subject><subject>LC/MS</subject><subject>Liquids</subject><subject>Machine Learning</subject><subject>Mass spectroscopy</subject><subject>Mathematics</subject><subject>Multiplicative noise</subject><subject>NMF</subject><subject>Noise</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Signal and Image processing</subject><subject>Sparsity</subject><subject>Spectrometry</subject><subject>Statistics</subject><issn>0165-1684</issn><issn>0923-5965</issn><issn>1872-7557</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgywpD0znESZ6lUVUCRihiA2XIdp7hK42C7FfDrSRTEyHS6p--90z1CrhESBMxnu8SbbedsQgGzBGkCyE7IBHlB4yLLilMy6bEsxpyzc3Lh_Q4AMM1hQuaLrmuMksHYNrJ11No2bvW234862svgzGdUSxWsM98jFGy0Xs6eXqJKBnlJzmrZeH31O6fk7f7udbmK188Pj8vFOlYMyxDXeYl6UyIFxWRVa1ZlNRZsk_FKFTljMq1SXijISgCeprLMJbA0o1RyTrGXpuR2zH2Xjeic2Uv3Jaw0YrVYi0EDhLKEojzSnr0Z2b6Rj4P2QeyNV7ppZKvtwQvkmANSxodYNqLKWe-drv-yEcRQrdiJsVoxVCuQ9odYb5uPNt2_fDTaCa-MbpWujNMqiMqa_wN-ALgagWI</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Rapin, Jérémy</creator><creator>Souloumiac, Antoine</creator><creator>Bobin, Jérôme</creator><creator>Larue, Anthony</creator><creator>Junot, Chistophe</creator><creator>Ouethrani, Minale</creator><creator>Starck, Jean-Luc</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201606</creationdate><title>Application of non-negative matrix factorization to LC/MS data</title><author>Rapin, Jérémy ; Souloumiac, Antoine ; Bobin, Jérôme ; Larue, Anthony ; Junot, Chistophe ; Ouethrani, Minale ; Starck, Jean-Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f691eb9120c4adfe4d5f174b58dc7644a3d387c05900833a96a043522a8821083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>BSS</topic><topic>Data Analysis, Statistics and Probability</topic><topic>Engineering Sciences</topic><topic>Factorization</topic><topic>LC/MS</topic><topic>Liquids</topic><topic>Machine Learning</topic><topic>Mass spectroscopy</topic><topic>Mathematics</topic><topic>Multiplicative noise</topic><topic>NMF</topic><topic>Noise</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Signal and Image processing</topic><topic>Sparsity</topic><topic>Spectrometry</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapin, Jérémy</creatorcontrib><creatorcontrib>Souloumiac, Antoine</creatorcontrib><creatorcontrib>Bobin, Jérôme</creatorcontrib><creatorcontrib>Larue, Anthony</creatorcontrib><creatorcontrib>Junot, Chistophe</creatorcontrib><creatorcontrib>Ouethrani, Minale</creatorcontrib><creatorcontrib>Starck, Jean-Luc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapin, Jérémy</au><au>Souloumiac, Antoine</au><au>Bobin, Jérôme</au><au>Larue, Anthony</au><au>Junot, Chistophe</au><au>Ouethrani, Minale</au><au>Starck, Jean-Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of non-negative matrix factorization to LC/MS data</atitle><jtitle>Signal processing</jtitle><date>2016-06</date><risdate>2016</risdate><volume>123</volume><spage>75</spage><epage>83</epage><pages>75-83</pages><issn>0165-1684</issn><issn>0923-5965</issn><eissn>1872-7557</eissn><eissn>1879-2677</eissn><abstract>Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data are however very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this paper, we propose an adaptation of a state-of-the-art NMF algorithms so as to specifically be able to deal with LC/MS data, by using a non-stationary noise model and a stochastic term. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. The results of these experiments highlight the significant improvement obtained by our adaptation over other NMF algorithms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2015.12.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2016-06, Vol.123, p.75-83
issn 0165-1684
0923-5965
1872-7557
1879-2677
language eng
recordid cdi_hal_primary_oai_HAL_hal_01099079v2
source ScienceDirect Journals (5 years ago - present)
subjects Adaptation
Algorithms
BSS
Data Analysis, Statistics and Probability
Engineering Sciences
Factorization
LC/MS
Liquids
Machine Learning
Mass spectroscopy
Mathematics
Multiplicative noise
NMF
Noise
Numerical Analysis
Physics
Signal and Image processing
Sparsity
Spectrometry
Statistics
title Application of non-negative matrix factorization to LC/MS data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20non-negative%20matrix%20factorization%20to%20LC/MS%20data&rft.jtitle=Signal%20processing&rft.au=Rapin,%20J%C3%A9r%C3%A9my&rft.date=2016-06&rft.volume=123&rft.spage=75&rft.epage=83&rft.pages=75-83&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2015.12.014&rft_dat=%3Cproquest_hal_p%3E1816012488%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816012488&rft_id=info:pmid/&rft_els_id=S0165168415004417&rfr_iscdi=true