Application of non-negative matrix factorization to LC/MS data
Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data a...
Gespeichert in:
Veröffentlicht in: | Signal processing 2016-06, Vol.123, p.75-83 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for their processing. These data are however very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this paper, we propose an adaptation of a state-of-the-art NMF algorithms so as to specifically be able to deal with LC/MS data, by using a non-stationary noise model and a stochastic term. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. The results of these experiments highlight the significant improvement obtained by our adaptation over other NMF algorithms. |
---|---|
ISSN: | 0165-1684 0923-5965 1872-7557 1879-2677 |
DOI: | 10.1016/j.sigpro.2015.12.014 |