Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation

The aim of the present paper is twofold: We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [ 10 ]. We extend the method so as to consider the shrinkage of the functional space. Roughly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2016-08, Vol.221 (2), p.677-723
Hauptverfasser: Mischler, S., Mouhot, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 2
container_start_page 677
container_title Archive for rational mechanics and analysis
container_volume 221
creator Mischler, S.
Mouhot, C.
description The aim of the present paper is twofold: We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [ 10 ]. We extend the method so as to consider the shrinkage of the functional space. Roughly speaking, we consider a class of operators written as a dissipative part plus a mild perturbation, and we prove that if the associated semigroup satisfies a decay estimate in some reference space then it satisfies the same decay estimate in another—smaller or larger—Banach space under the condition that a certain iterate of the “mild perturbation” part of the operator combined with the dissipative part of the semigroup maps the larger space to the smaller space in a bounded way. The cornerstone of our approach is a factorization argument, reminiscent of the Dyson series. We apply this method to the kinetic Fokker-Planck equation when the spatial domain is either the torus with periodic boundary conditions, or the whole space with a confinement potential. We then obtain spectral gap estimates for the associated semigroup for various metrics, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W 1 .
doi_str_mv 10.1007/s00205-016-0972-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01098081v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835562874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-6552592420797efa951eed96b60bc50e6c80d3cd3dc2b6d68f37242a37c14f2a3</originalsourceid><addsrcrecordid>eNp9kEFPGzEQha0KpAboD-jNRziYju21vXuMQoCqkYoUkLhZjtcLJs46WXtb8u_Z1VY9cnqa0feeZh5C3ylcUwD1IwEwEASoJFApRoovaEYLzghIxU_QDAA4qQRTX9FZSm_jyLicoefl-z62rs3eBLzOZuODz0ccG7wO8W844htnzdG3L3gdQ599bBPOEedXh3_51mVvyW3cbl1HHoJp7RYvD70ZsQt02piQ3Ld_eo6ebpePi3uy-n33czFfEcurMhMpBBMVKxioSrnGVII6V1dyI2FjBThpS6i5rXlt2UbWsmy4GmjDlaVFM-g5uppyX03Q-87vTHfU0Xh9P1_pcQcUqhJK-ocP7OXE7rt46F3KeueTdWG43MU-aVpyISQrVTGgdEJtF1PqXPM_m4IeG9dT40O81GPjevSwyZMGtn1xnX6LfdcO339i-gD62IKy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835562874</pqid></control><display><type>article</type><title>Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Mischler, S. ; Mouhot, C.</creator><creatorcontrib>Mischler, S. ; Mouhot, C.</creatorcontrib><description>The aim of the present paper is twofold: We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [ 10 ]. We extend the method so as to consider the shrinkage of the functional space. Roughly speaking, we consider a class of operators written as a dissipative part plus a mild perturbation, and we prove that if the associated semigroup satisfies a decay estimate in some reference space then it satisfies the same decay estimate in another—smaller or larger—Banach space under the condition that a certain iterate of the “mild perturbation” part of the operator combined with the dissipative part of the semigroup maps the larger space to the smaller space in a bounded way. The cornerstone of our approach is a factorization argument, reminiscent of the Dyson series. We apply this method to the kinetic Fokker-Planck equation when the spatial domain is either the torus with periodic boundary conditions, or the whole space with a confinement potential. We then obtain spectral gap estimates for the associated semigroup for various metrics, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W 1 .</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-016-0972-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Classical Mechanics ; Complex Systems ; Decay ; Dissipation ; Estimates ; Fluid- and Aerodynamics ; Group theory ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Norms ; Operators ; Perturbation methods ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2016-08, Vol.221 (2), p.677-723</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-6552592420797efa951eed96b60bc50e6c80d3cd3dc2b6d68f37242a37c14f2a3</citedby><cites>FETCH-LOGICAL-c398t-6552592420797efa951eed96b60bc50e6c80d3cd3dc2b6d68f37242a37c14f2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-016-0972-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-016-0972-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01098081$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mischler, S.</creatorcontrib><creatorcontrib>Mouhot, C.</creatorcontrib><title>Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>The aim of the present paper is twofold: We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [ 10 ]. We extend the method so as to consider the shrinkage of the functional space. Roughly speaking, we consider a class of operators written as a dissipative part plus a mild perturbation, and we prove that if the associated semigroup satisfies a decay estimate in some reference space then it satisfies the same decay estimate in another—smaller or larger—Banach space under the condition that a certain iterate of the “mild perturbation” part of the operator combined with the dissipative part of the semigroup maps the larger space to the smaller space in a bounded way. The cornerstone of our approach is a factorization argument, reminiscent of the Dyson series. We apply this method to the kinetic Fokker-Planck equation when the spatial domain is either the torus with periodic boundary conditions, or the whole space with a confinement potential. We then obtain spectral gap estimates for the associated semigroup for various metrics, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W 1 .</description><subject>Analysis of PDEs</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Decay</subject><subject>Dissipation</subject><subject>Estimates</subject><subject>Fluid- and Aerodynamics</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Norms</subject><subject>Operators</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPGzEQha0KpAboD-jNRziYju21vXuMQoCqkYoUkLhZjtcLJs46WXtb8u_Z1VY9cnqa0feeZh5C3ylcUwD1IwEwEASoJFApRoovaEYLzghIxU_QDAA4qQRTX9FZSm_jyLicoefl-z62rs3eBLzOZuODz0ccG7wO8W844htnzdG3L3gdQ599bBPOEedXh3_51mVvyW3cbl1HHoJp7RYvD70ZsQt02piQ3Ld_eo6ebpePi3uy-n33czFfEcurMhMpBBMVKxioSrnGVII6V1dyI2FjBThpS6i5rXlt2UbWsmy4GmjDlaVFM-g5uppyX03Q-87vTHfU0Xh9P1_pcQcUqhJK-ocP7OXE7rt46F3KeueTdWG43MU-aVpyISQrVTGgdEJtF1PqXPM_m4IeG9dT40O81GPjevSwyZMGtn1xnX6LfdcO339i-gD62IKy</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Mischler, S.</creator><creator>Mouhot, C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160801</creationdate><title>Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation</title><author>Mischler, S. ; Mouhot, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-6552592420797efa951eed96b60bc50e6c80d3cd3dc2b6d68f37242a37c14f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis of PDEs</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Decay</topic><topic>Dissipation</topic><topic>Estimates</topic><topic>Fluid- and Aerodynamics</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Norms</topic><topic>Operators</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mischler, S.</creatorcontrib><creatorcontrib>Mouhot, C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mischler, S.</au><au>Mouhot, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>221</volume><issue>2</issue><spage>677</spage><epage>723</epage><pages>677-723</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>The aim of the present paper is twofold: We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [ 10 ]. We extend the method so as to consider the shrinkage of the functional space. Roughly speaking, we consider a class of operators written as a dissipative part plus a mild perturbation, and we prove that if the associated semigroup satisfies a decay estimate in some reference space then it satisfies the same decay estimate in another—smaller or larger—Banach space under the condition that a certain iterate of the “mild perturbation” part of the operator combined with the dissipative part of the semigroup maps the larger space to the smaller space in a bounded way. The cornerstone of our approach is a factorization argument, reminiscent of the Dyson series. We apply this method to the kinetic Fokker-Planck equation when the spatial domain is either the torus with periodic boundary conditions, or the whole space with a confinement potential. We then obtain spectral gap estimates for the associated semigroup for various metrics, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W 1 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-016-0972-4</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2016-08, Vol.221 (2), p.677-723
issn 0003-9527
1432-0673
language eng
recordid cdi_hal_primary_oai_HAL_hal_01098081v3
source Springer Nature - Complete Springer Journals
subjects Analysis of PDEs
Classical Mechanics
Complex Systems
Decay
Dissipation
Estimates
Fluid- and Aerodynamics
Group theory
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Norms
Operators
Perturbation methods
Physics
Physics and Astronomy
Theoretical
title Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Stability%20of%20Slowly%20Decaying%20Solutions%20to%20the%20Kinetic-Fokker-Planck%20Equation&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Mischler,%20S.&rft.date=2016-08-01&rft.volume=221&rft.issue=2&rft.spage=677&rft.epage=723&rft.pages=677-723&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-016-0972-4&rft_dat=%3Cproquest_hal_p%3E1835562874%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835562874&rft_id=info:pmid/&rfr_iscdi=true