Ramified covers and tame isomonodromic solutions on curves
In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.
Gespeichert in:
Veröffentlicht in: | Transactions of the Moscow Mathematical Society 2015, Vol.76 (2), p.219-236 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | Transactions of the Moscow Mathematical Society |
container_volume | 76 |
creator | Diarra, Karamoko Loray, Frank |
description | In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result. |
doi_str_mv | 10.1090/mosc/247 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01097433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01097433v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1997-59abbd7157e71cb2a99d459316af04ca320df94868ffdb24a9f63e731cde75653</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoOFbBnxBwo4uxySSZNO5KUSsUBFFwF97kAyPNRJK24L93hhF3rh5czr3wDkKXlNxSosg8pmLmDZdHqKKCy1qyxfsxqgiRsqZC8FN0VsonIY1sW1ahuxeIwQdnsUkHlwuG3uIdRIdDSTH1yeYUg8Elbfe7kPqCU4_NPh9cOUcnHrbFXfzeGXp7uH9drevN8-PTarmpgSola6Gg66ykQjpJTdeAUpYLxWgLnnADrCHWK75oF97bruGgfMucZNRYJ0Ur2AzdTLsfsNVfOUTI3zpB0OvlRo8ZGR6XnLEDHdjriTU5lZKd_ytQokc_evSjBz8DejWhEMv_1A_G5mPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ramified covers and tame isomonodromic solutions on curves</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Mathematical Society Publications</source><creator>Diarra, Karamoko ; Loray, Frank</creator><creatorcontrib>Diarra, Karamoko ; Loray, Frank</creatorcontrib><description>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</description><identifier>ISSN: 0077-1554</identifier><identifier>EISSN: 1547-738X</identifier><identifier>DOI: 10.1090/mosc/247</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Classical Analysis and ODEs ; Mathematics</subject><ispartof>Transactions of the Moscow Mathematical Society, 2015, Vol.76 (2), p.219-236</ispartof><rights>Copyright 2015, K. Diarra, F. Loray</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2393-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mosc/2015-76-00/S0077-1554-2015-00247-3/S0077-1554-2015-00247-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mosc/2015-76-00/S0077-1554-2015-00247-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,780,784,885,4014,23315,23319,27914,27915,27916,77597,77599,77607,77609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01097433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diarra, Karamoko</creatorcontrib><creatorcontrib>Loray, Frank</creatorcontrib><title>Ramified covers and tame isomonodromic solutions on curves</title><title>Transactions of the Moscow Mathematical Society</title><description>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</description><subject>Classical Analysis and ODEs</subject><subject>Mathematics</subject><issn>0077-1554</issn><issn>1547-738X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoOFbBnxBwo4uxySSZNO5KUSsUBFFwF97kAyPNRJK24L93hhF3rh5czr3wDkKXlNxSosg8pmLmDZdHqKKCy1qyxfsxqgiRsqZC8FN0VsonIY1sW1ahuxeIwQdnsUkHlwuG3uIdRIdDSTH1yeYUg8Elbfe7kPqCU4_NPh9cOUcnHrbFXfzeGXp7uH9drevN8-PTarmpgSola6Gg66ykQjpJTdeAUpYLxWgLnnADrCHWK75oF97bruGgfMucZNRYJ0Ur2AzdTLsfsNVfOUTI3zpB0OvlRo8ZGR6XnLEDHdjriTU5lZKd_ytQokc_evSjBz8DejWhEMv_1A_G5mPy</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Diarra, Karamoko</creator><creator>Loray, Frank</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2393-7974</orcidid></search><sort><creationdate>2015</creationdate><title>Ramified covers and tame isomonodromic solutions on curves</title><author>Diarra, Karamoko ; Loray, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1997-59abbd7157e71cb2a99d459316af04ca320df94868ffdb24a9f63e731cde75653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Analysis and ODEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diarra, Karamoko</creatorcontrib><creatorcontrib>Loray, Frank</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the Moscow Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diarra, Karamoko</au><au>Loray, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramified covers and tame isomonodromic solutions on curves</atitle><jtitle>Transactions of the Moscow Mathematical Society</jtitle><date>2015</date><risdate>2015</risdate><volume>76</volume><issue>2</issue><spage>219</spage><epage>236</epage><pages>219-236</pages><issn>0077-1554</issn><eissn>1547-738X</eissn><abstract>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mosc/247</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2393-7974</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-1554 |
ispartof | Transactions of the Moscow Mathematical Society, 2015, Vol.76 (2), p.219-236 |
issn | 0077-1554 1547-738X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01097433v1 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Mathematical Society Publications |
subjects | Classical Analysis and ODEs Mathematics |
title | Ramified covers and tame isomonodromic solutions on curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramified%20covers%20and%20tame%20isomonodromic%20solutions%20on%20curves&rft.jtitle=Transactions%20of%20the%20Moscow%20Mathematical%20Society&rft.au=Diarra,%20Karamoko&rft.date=2015&rft.volume=76&rft.issue=2&rft.spage=219&rft.epage=236&rft.pages=219-236&rft.issn=0077-1554&rft.eissn=1547-738X&rft_id=info:doi/10.1090/mosc/247&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01097433v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |