Ramified covers and tame isomonodromic solutions on curves

In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Moscow Mathematical Society 2015, Vol.76 (2), p.219-236
Hauptverfasser: Diarra, Karamoko, Loray, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 219
container_title Transactions of the Moscow Mathematical Society
container_volume 76
creator Diarra, Karamoko
Loray, Frank
description In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.
doi_str_mv 10.1090/mosc/247
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01097433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01097433v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1997-59abbd7157e71cb2a99d459316af04ca320df94868ffdb24a9f63e731cde75653</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoOFbBnxBwo4uxySSZNO5KUSsUBFFwF97kAyPNRJK24L93hhF3rh5czr3wDkKXlNxSosg8pmLmDZdHqKKCy1qyxfsxqgiRsqZC8FN0VsonIY1sW1ahuxeIwQdnsUkHlwuG3uIdRIdDSTH1yeYUg8Elbfe7kPqCU4_NPh9cOUcnHrbFXfzeGXp7uH9drevN8-PTarmpgSola6Gg66ykQjpJTdeAUpYLxWgLnnADrCHWK75oF97bruGgfMucZNRYJ0Ur2AzdTLsfsNVfOUTI3zpB0OvlRo8ZGR6XnLEDHdjriTU5lZKd_ytQokc_evSjBz8DejWhEMv_1A_G5mPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ramified covers and tame isomonodromic solutions on curves</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Mathematical Society Publications</source><creator>Diarra, Karamoko ; Loray, Frank</creator><creatorcontrib>Diarra, Karamoko ; Loray, Frank</creatorcontrib><description>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</description><identifier>ISSN: 0077-1554</identifier><identifier>EISSN: 1547-738X</identifier><identifier>DOI: 10.1090/mosc/247</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Classical Analysis and ODEs ; Mathematics</subject><ispartof>Transactions of the Moscow Mathematical Society, 2015, Vol.76 (2), p.219-236</ispartof><rights>Copyright 2015, K. Diarra, F. Loray</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2393-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mosc/2015-76-00/S0077-1554-2015-00247-3/S0077-1554-2015-00247-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mosc/2015-76-00/S0077-1554-2015-00247-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,780,784,885,4014,23315,23319,27914,27915,27916,77597,77599,77607,77609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01097433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diarra, Karamoko</creatorcontrib><creatorcontrib>Loray, Frank</creatorcontrib><title>Ramified covers and tame isomonodromic solutions on curves</title><title>Transactions of the Moscow Mathematical Society</title><description>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</description><subject>Classical Analysis and ODEs</subject><subject>Mathematics</subject><issn>0077-1554</issn><issn>1547-738X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoOFbBnxBwo4uxySSZNO5KUSsUBFFwF97kAyPNRJK24L93hhF3rh5czr3wDkKXlNxSosg8pmLmDZdHqKKCy1qyxfsxqgiRsqZC8FN0VsonIY1sW1ahuxeIwQdnsUkHlwuG3uIdRIdDSTH1yeYUg8Elbfe7kPqCU4_NPh9cOUcnHrbFXfzeGXp7uH9drevN8-PTarmpgSola6Gg66ykQjpJTdeAUpYLxWgLnnADrCHWK75oF97bruGgfMucZNRYJ0Ur2AzdTLsfsNVfOUTI3zpB0OvlRo8ZGR6XnLEDHdjriTU5lZKd_ytQokc_evSjBz8DejWhEMv_1A_G5mPy</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Diarra, Karamoko</creator><creator>Loray, Frank</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2393-7974</orcidid></search><sort><creationdate>2015</creationdate><title>Ramified covers and tame isomonodromic solutions on curves</title><author>Diarra, Karamoko ; Loray, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1997-59abbd7157e71cb2a99d459316af04ca320df94868ffdb24a9f63e731cde75653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Analysis and ODEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diarra, Karamoko</creatorcontrib><creatorcontrib>Loray, Frank</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the Moscow Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diarra, Karamoko</au><au>Loray, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramified covers and tame isomonodromic solutions on curves</atitle><jtitle>Transactions of the Moscow Mathematical Society</jtitle><date>2015</date><risdate>2015</risdate><volume>76</volume><issue>2</issue><spage>219</spage><epage>236</epage><pages>219-236</pages><issn>0077-1554</issn><eissn>1547-738X</eissn><abstract>In this paper, we investigate the possibility of constructing isomonodromic deformations of logarithmic connections on curves by ramified covers. We give new examples and prove a classification result.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mosc/247</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2393-7974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-1554
ispartof Transactions of the Moscow Mathematical Society, 2015, Vol.76 (2), p.219-236
issn 0077-1554
1547-738X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01097433v1
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Mathematical Society Publications
subjects Classical Analysis and ODEs
Mathematics
title Ramified covers and tame isomonodromic solutions on curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramified%20covers%20and%20tame%20isomonodromic%20solutions%20on%20curves&rft.jtitle=Transactions%20of%20the%20Moscow%20Mathematical%20Society&rft.au=Diarra,%20Karamoko&rft.date=2015&rft.volume=76&rft.issue=2&rft.spage=219&rft.epage=236&rft.pages=219-236&rft.issn=0077-1554&rft.eissn=1547-738X&rft_id=info:doi/10.1090/mosc/247&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01097433v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true