Mathematical modeling of volumetric material growth
Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformati...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2014-10, Vol.84 (9-11), p.1357-1371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 9-11 |
container_start_page | 1357 |
container_title | Archive of applied mechanics (1991) |
container_volume | 84 |
creator | Ganghoffer, Jean-Frano̧is Plotnikov, Pavel I. Sokołowski, Jan |
description | Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth. |
doi_str_mv | 10.1007/s00419-014-0884-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01096519v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651446668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxyhINhN_6pc6wqaJGKuMDZch2nTZXExU6KeHtcBXHktNLMNyPtEHKL8IAAs8cIwLGggJyCUpzyMzJBznIKUuE5mUDBCoqCsUtyFeMeEi5ymBD2avqda01fW9NkrS9dU3fbzFfZ0TdD6_pQ2yzZLtTJ3wb_1e-uyUVlmuhufu-UfDw_vS9WdP22fFnM19RyqXpqZ6xi4ISSKi8t8kqVlUVhBJS8dAKMKIFZZBJmlZLFxkgJGyg4IENgZsOm5H7s3ZlGH0LdmvCtvan1ar7WJw0QCimwOGJi70b2EPzn4GKv2zpa1zSmc36IGhPHuZRSJRRH1AYfY3DVXzeCPo2pxzFTPdenMTVPmXzMxMR2Wxf03g-hS9__E_oB7LN1IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651446668</pqid></control><display><type>article</type><title>Mathematical modeling of volumetric material growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</creator><creatorcontrib>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</creatorcontrib><description>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-014-0884-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Classical Mechanics ; Constitutive relationships ; Density ; Engineering ; Evolution ; Law ; Mathematical analysis ; Mathematical models ; Mathematics ; Special Issue ; Tensors ; Theoretical and Applied Mechanics ; Transplants ; Volumetric analysis</subject><ispartof>Archive of applied mechanics (1991), 2014-10, Vol.84 (9-11), p.1357-1371</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</citedby><cites>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</cites><orcidid>0000-0002-7947-0587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-014-0884-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-014-0884-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01096519$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganghoffer, Jean-Frano̧is</creatorcontrib><creatorcontrib>Plotnikov, Pavel I.</creatorcontrib><creatorcontrib>Sokołowski, Jan</creatorcontrib><title>Mathematical modeling of volumetric material growth</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</description><subject>Analysis of PDEs</subject><subject>Classical Mechanics</subject><subject>Constitutive relationships</subject><subject>Density</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Special Issue</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Transplants</subject><subject>Volumetric analysis</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxyhINhN_6pc6wqaJGKuMDZch2nTZXExU6KeHtcBXHktNLMNyPtEHKL8IAAs8cIwLGggJyCUpzyMzJBznIKUuE5mUDBCoqCsUtyFeMeEi5ymBD2avqda01fW9NkrS9dU3fbzFfZ0TdD6_pQ2yzZLtTJ3wb_1e-uyUVlmuhufu-UfDw_vS9WdP22fFnM19RyqXpqZ6xi4ISSKi8t8kqVlUVhBJS8dAKMKIFZZBJmlZLFxkgJGyg4IENgZsOm5H7s3ZlGH0LdmvCtvan1ar7WJw0QCimwOGJi70b2EPzn4GKv2zpa1zSmc36IGhPHuZRSJRRH1AYfY3DVXzeCPo2pxzFTPdenMTVPmXzMxMR2Wxf03g-hS9__E_oB7LN1IQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ganghoffer, Jean-Frano̧is</creator><creator>Plotnikov, Pavel I.</creator><creator>Sokołowski, Jan</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid></search><sort><creationdate>20141001</creationdate><title>Mathematical modeling of volumetric material growth</title><author>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of PDEs</topic><topic>Classical Mechanics</topic><topic>Constitutive relationships</topic><topic>Density</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Special Issue</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Transplants</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganghoffer, Jean-Frano̧is</creatorcontrib><creatorcontrib>Plotnikov, Pavel I.</creatorcontrib><creatorcontrib>Sokołowski, Jan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganghoffer, Jean-Frano̧is</au><au>Plotnikov, Pavel I.</au><au>Sokołowski, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of volumetric material growth</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>84</volume><issue>9-11</issue><spage>1357</spage><epage>1371</epage><pages>1357-1371</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-014-0884-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2014-10, Vol.84 (9-11), p.1357-1371 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01096519v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis of PDEs Classical Mechanics Constitutive relationships Density Engineering Evolution Law Mathematical analysis Mathematical models Mathematics Special Issue Tensors Theoretical and Applied Mechanics Transplants Volumetric analysis |
title | Mathematical modeling of volumetric material growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20volumetric%20material%20growth&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Ganghoffer,%20Jean-Frano%CC%A7is&rft.date=2014-10-01&rft.volume=84&rft.issue=9-11&rft.spage=1357&rft.epage=1371&rft.pages=1357-1371&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-014-0884-4&rft_dat=%3Cproquest_hal_p%3E1651446668%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651446668&rft_id=info:pmid/&rfr_iscdi=true |