Mathematical modeling of volumetric material growth

Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2014-10, Vol.84 (9-11), p.1357-1371
Hauptverfasser: Ganghoffer, Jean-Frano̧is, Plotnikov, Pavel I., Sokołowski, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1371
container_issue 9-11
container_start_page 1357
container_title Archive of applied mechanics (1991)
container_volume 84
creator Ganghoffer, Jean-Frano̧is
Plotnikov, Pavel I.
Sokołowski, Jan
description Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.
doi_str_mv 10.1007/s00419-014-0884-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01096519v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651446668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxyhINhN_6pc6wqaJGKuMDZch2nTZXExU6KeHtcBXHktNLMNyPtEHKL8IAAs8cIwLGggJyCUpzyMzJBznIKUuE5mUDBCoqCsUtyFeMeEi5ymBD2avqda01fW9NkrS9dU3fbzFfZ0TdD6_pQ2yzZLtTJ3wb_1e-uyUVlmuhufu-UfDw_vS9WdP22fFnM19RyqXpqZ6xi4ISSKi8t8kqVlUVhBJS8dAKMKIFZZBJmlZLFxkgJGyg4IENgZsOm5H7s3ZlGH0LdmvCtvan1ar7WJw0QCimwOGJi70b2EPzn4GKv2zpa1zSmc36IGhPHuZRSJRRH1AYfY3DVXzeCPo2pxzFTPdenMTVPmXzMxMR2Wxf03g-hS9__E_oB7LN1IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651446668</pqid></control><display><type>article</type><title>Mathematical modeling of volumetric material growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</creator><creatorcontrib>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</creatorcontrib><description>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-014-0884-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Classical Mechanics ; Constitutive relationships ; Density ; Engineering ; Evolution ; Law ; Mathematical analysis ; Mathematical models ; Mathematics ; Special Issue ; Tensors ; Theoretical and Applied Mechanics ; Transplants ; Volumetric analysis</subject><ispartof>Archive of applied mechanics (1991), 2014-10, Vol.84 (9-11), p.1357-1371</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</citedby><cites>FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</cites><orcidid>0000-0002-7947-0587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-014-0884-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-014-0884-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01096519$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganghoffer, Jean-Frano̧is</creatorcontrib><creatorcontrib>Plotnikov, Pavel I.</creatorcontrib><creatorcontrib>Sokołowski, Jan</creatorcontrib><title>Mathematical modeling of volumetric material growth</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</description><subject>Analysis of PDEs</subject><subject>Classical Mechanics</subject><subject>Constitutive relationships</subject><subject>Density</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Special Issue</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Transplants</subject><subject>Volumetric analysis</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxyhINhN_6pc6wqaJGKuMDZch2nTZXExU6KeHtcBXHktNLMNyPtEHKL8IAAs8cIwLGggJyCUpzyMzJBznIKUuE5mUDBCoqCsUtyFeMeEi5ymBD2avqda01fW9NkrS9dU3fbzFfZ0TdD6_pQ2yzZLtTJ3wb_1e-uyUVlmuhufu-UfDw_vS9WdP22fFnM19RyqXpqZ6xi4ISSKi8t8kqVlUVhBJS8dAKMKIFZZBJmlZLFxkgJGyg4IENgZsOm5H7s3ZlGH0LdmvCtvan1ar7WJw0QCimwOGJi70b2EPzn4GKv2zpa1zSmc36IGhPHuZRSJRRH1AYfY3DVXzeCPo2pxzFTPdenMTVPmXzMxMR2Wxf03g-hS9__E_oB7LN1IQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ganghoffer, Jean-Frano̧is</creator><creator>Plotnikov, Pavel I.</creator><creator>Sokołowski, Jan</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid></search><sort><creationdate>20141001</creationdate><title>Mathematical modeling of volumetric material growth</title><author>Ganghoffer, Jean-Frano̧is ; Plotnikov, Pavel I. ; Sokołowski, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-c73f30e58682dc14f8dfc15a50d4de50a5d03c13607f869ba660b094013103ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of PDEs</topic><topic>Classical Mechanics</topic><topic>Constitutive relationships</topic><topic>Density</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Special Issue</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Transplants</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganghoffer, Jean-Frano̧is</creatorcontrib><creatorcontrib>Plotnikov, Pavel I.</creatorcontrib><creatorcontrib>Sokołowski, Jan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganghoffer, Jean-Frano̧is</au><au>Plotnikov, Pavel I.</au><au>Sokołowski, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of volumetric material growth</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>84</volume><issue>9-11</issue><spage>1357</spage><epage>1371</epage><pages>1357-1371</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-014-0884-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2014-10, Vol.84 (9-11), p.1357-1371
issn 0939-1533
1432-0681
language eng
recordid cdi_hal_primary_oai_HAL_hal_01096519v1
source SpringerLink Journals - AutoHoldings
subjects Analysis of PDEs
Classical Mechanics
Constitutive relationships
Density
Engineering
Evolution
Law
Mathematical analysis
Mathematical models
Mathematics
Special Issue
Tensors
Theoretical and Applied Mechanics
Transplants
Volumetric analysis
title Mathematical modeling of volumetric material growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20volumetric%20material%20growth&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Ganghoffer,%20Jean-Frano%CC%A7is&rft.date=2014-10-01&rft.volume=84&rft.issue=9-11&rft.spage=1357&rft.epage=1371&rft.pages=1357-1371&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-014-0884-4&rft_dat=%3Cproquest_hal_p%3E1651446668%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651446668&rft_id=info:pmid/&rfr_iscdi=true