Static Network Reliability Estimation under the Marshall-Olkin Copula
In a static network reliability model, one typically assumes that the failures of the components of the network are independent. This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider...
Gespeichert in:
Veröffentlicht in: | ACM transactions on modeling and computer simulation 2016-01, Vol.26 (2), p.1-28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on modeling and computer simulation |
container_volume | 26 |
creator | Botev, Zdravko I. L'Ecuyer, Pierre Simard, Richard Tuffin, Bruno |
description | In a static network reliability model, one typically assumes that the failures of the components of the network are independent. This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider is whether this independence assumption can be relaxed while still attaining an elegant and tractable model that permits an efficient Monte Carlo algorithm for unreliability estimation. In this article, we provide one possible answer by considering a static network reliability model with dependent link failures, based on a Marshall-Olkin copula, which models the dependence via shocks that take down subsets of components at exponential times, and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo method), its refinement called the
turnip method
, and generalized splitting (GS) methods to estimate very small unreliabilities accurately under this model. The PMC and turnip estimators have bounded relative error when the network topology is fixed while the link failure probabilities converge to 0, whereas GS does not have this property. But when the size of the network (or the number of shocks) increases, PMC and turnip eventually fail, whereas GS works nicely (empirically) for very large networks, with over 5,000 shocks in our examples. |
doi_str_mv | 10.1145/2775106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01096393v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793243155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6f1a1339f86fbd4c0c92e7520ac270256b0722995f3518a4c8ef1353e4df91873</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKv4F_amHlYzmc3u5lhKtUK14Mc5pGlCY9PdmmSV_nu3tHiaYebh5eUh5BroPUDBH1hVcaDlCRkA53UOIPhpv9NC5IgUzslFjF-UAlLGBmTynlRyOns16bcN6-zNeKcWzru0yyYxuU3_bZusa5YmZGllshcV4kp5n8_92jXZuN12Xl2SM6t8NFfHOSSfj5OP8TSfzZ-ex6NZrrGgKS8tKEAUti7tYlloqgUzFWdUaVZRxssFrRgTglvkUKtC18YCcjTF0gqoKxySu0Nu30BuQ98u7GSrnJyOZnJ_o0BFiQJ_oGdvD-w2tN-diUluXNTGe9WYtosSKoGswF5Sj94cUB3aGIOx_9lA5V6qPErFPwFlZmU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793243155</pqid></control><display><type>article</type><title>Static Network Reliability Estimation under the Marshall-Olkin Copula</title><source>ACM Digital Library Complete</source><creator>Botev, Zdravko I. ; L'Ecuyer, Pierre ; Simard, Richard ; Tuffin, Bruno</creator><creatorcontrib>Botev, Zdravko I. ; L'Ecuyer, Pierre ; Simard, Richard ; Tuffin, Bruno</creatorcontrib><description>In a static network reliability model, one typically assumes that the failures of the components of the network are independent. This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider is whether this independence assumption can be relaxed while still attaining an elegant and tractable model that permits an efficient Monte Carlo algorithm for unreliability estimation. In this article, we provide one possible answer by considering a static network reliability model with dependent link failures, based on a Marshall-Olkin copula, which models the dependence via shocks that take down subsets of components at exponential times, and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo method), its refinement called the
turnip method
, and generalized splitting (GS) methods to estimate very small unreliabilities accurately under this model. The PMC and turnip estimators have bounded relative error when the network topology is fixed while the link failure probabilities converge to 0, whereas GS does not have this property. But when the size of the network (or the number of shocks) increases, PMC and turnip eventually fail, whereas GS works nicely (empirically) for very large networks, with over 5,000 shocks in our examples.</description><identifier>ISSN: 1049-3301</identifier><identifier>EISSN: 1558-1195</identifier><identifier>DOI: 10.1145/2775106</identifier><language>eng</language><publisher>Association for Computing Machinery</publisher><subject>Algorithms ; Computer Science ; Computer simulation ; Estimates ; Failure ; Monte Carlo methods ; Networks ; Operations Research ; System reliability ; Turnips</subject><ispartof>ACM transactions on modeling and computer simulation, 2016-01, Vol.26 (2), p.1-28</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6f1a1339f86fbd4c0c92e7520ac270256b0722995f3518a4c8ef1353e4df91873</citedby><cites>FETCH-LOGICAL-c340t-6f1a1339f86fbd4c0c92e7520ac270256b0722995f3518a4c8ef1353e4df91873</cites><orcidid>0000-0001-9415-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01096393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Botev, Zdravko I.</creatorcontrib><creatorcontrib>L'Ecuyer, Pierre</creatorcontrib><creatorcontrib>Simard, Richard</creatorcontrib><creatorcontrib>Tuffin, Bruno</creatorcontrib><title>Static Network Reliability Estimation under the Marshall-Olkin Copula</title><title>ACM transactions on modeling and computer simulation</title><description>In a static network reliability model, one typically assumes that the failures of the components of the network are independent. This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider is whether this independence assumption can be relaxed while still attaining an elegant and tractable model that permits an efficient Monte Carlo algorithm for unreliability estimation. In this article, we provide one possible answer by considering a static network reliability model with dependent link failures, based on a Marshall-Olkin copula, which models the dependence via shocks that take down subsets of components at exponential times, and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo method), its refinement called the
turnip method
, and generalized splitting (GS) methods to estimate very small unreliabilities accurately under this model. The PMC and turnip estimators have bounded relative error when the network topology is fixed while the link failure probabilities converge to 0, whereas GS does not have this property. But when the size of the network (or the number of shocks) increases, PMC and turnip eventually fail, whereas GS works nicely (empirically) for very large networks, with over 5,000 shocks in our examples.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Estimates</subject><subject>Failure</subject><subject>Monte Carlo methods</subject><subject>Networks</subject><subject>Operations Research</subject><subject>System reliability</subject><subject>Turnips</subject><issn>1049-3301</issn><issn>1558-1195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKv4F_amHlYzmc3u5lhKtUK14Mc5pGlCY9PdmmSV_nu3tHiaYebh5eUh5BroPUDBH1hVcaDlCRkA53UOIPhpv9NC5IgUzslFjF-UAlLGBmTynlRyOns16bcN6-zNeKcWzru0yyYxuU3_bZusa5YmZGllshcV4kp5n8_92jXZuN12Xl2SM6t8NFfHOSSfj5OP8TSfzZ-ex6NZrrGgKS8tKEAUti7tYlloqgUzFWdUaVZRxssFrRgTglvkUKtC18YCcjTF0gqoKxySu0Nu30BuQ98u7GSrnJyOZnJ_o0BFiQJ_oGdvD-w2tN-diUluXNTGe9WYtosSKoGswF5Sj94cUB3aGIOx_9lA5V6qPErFPwFlZmU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Botev, Zdravko I.</creator><creator>L'Ecuyer, Pierre</creator><creator>Simard, Richard</creator><creator>Tuffin, Bruno</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9415-1130</orcidid></search><sort><creationdate>20160101</creationdate><title>Static Network Reliability Estimation under the Marshall-Olkin Copula</title><author>Botev, Zdravko I. ; L'Ecuyer, Pierre ; Simard, Richard ; Tuffin, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6f1a1339f86fbd4c0c92e7520ac270256b0722995f3518a4c8ef1353e4df91873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Estimates</topic><topic>Failure</topic><topic>Monte Carlo methods</topic><topic>Networks</topic><topic>Operations Research</topic><topic>System reliability</topic><topic>Turnips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botev, Zdravko I.</creatorcontrib><creatorcontrib>L'Ecuyer, Pierre</creatorcontrib><creatorcontrib>Simard, Richard</creatorcontrib><creatorcontrib>Tuffin, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACM transactions on modeling and computer simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botev, Zdravko I.</au><au>L'Ecuyer, Pierre</au><au>Simard, Richard</au><au>Tuffin, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Network Reliability Estimation under the Marshall-Olkin Copula</atitle><jtitle>ACM transactions on modeling and computer simulation</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>26</volume><issue>2</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>1049-3301</issn><eissn>1558-1195</eissn><abstract>In a static network reliability model, one typically assumes that the failures of the components of the network are independent. This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo algorithms. Hence, a natural question to consider is whether this independence assumption can be relaxed while still attaining an elegant and tractable model that permits an efficient Monte Carlo algorithm for unreliability estimation. In this article, we provide one possible answer by considering a static network reliability model with dependent link failures, based on a Marshall-Olkin copula, which models the dependence via shocks that take down subsets of components at exponential times, and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo method), its refinement called the
turnip method
, and generalized splitting (GS) methods to estimate very small unreliabilities accurately under this model. The PMC and turnip estimators have bounded relative error when the network topology is fixed while the link failure probabilities converge to 0, whereas GS does not have this property. But when the size of the network (or the number of shocks) increases, PMC and turnip eventually fail, whereas GS works nicely (empirically) for very large networks, with over 5,000 shocks in our examples.</abstract><pub>Association for Computing Machinery</pub><doi>10.1145/2775106</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-9415-1130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-3301 |
ispartof | ACM transactions on modeling and computer simulation, 2016-01, Vol.26 (2), p.1-28 |
issn | 1049-3301 1558-1195 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01096393v1 |
source | ACM Digital Library Complete |
subjects | Algorithms Computer Science Computer simulation Estimates Failure Monte Carlo methods Networks Operations Research System reliability Turnips |
title | Static Network Reliability Estimation under the Marshall-Olkin Copula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Network%20Reliability%20Estimation%20under%20the%20Marshall-Olkin%20Copula&rft.jtitle=ACM%20transactions%20on%20modeling%20and%20computer%20simulation&rft.au=Botev,%20Zdravko%20I.&rft.date=2016-01-01&rft.volume=26&rft.issue=2&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=1049-3301&rft.eissn=1558-1195&rft_id=info:doi/10.1145/2775106&rft_dat=%3Cproquest_hal_p%3E1793243155%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793243155&rft_id=info:pmid/&rfr_iscdi=true |