Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis

Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2014-10, Vol.53 (19), p.10129-10139
Hauptverfasser: Andriamiadamanana, Christian, Laberty-Robert, Christel, Sougrati, Moulay T, Casale, Sandra, Davoisne, Carine, Patra, Snehangshu, Sauvage, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10139
container_issue 19
container_start_page 10129
container_title Inorganic chemistry
container_volume 53
creator Andriamiadamanana, Christian
Laberty-Robert, Christel
Sougrati, Moulay T
Casale, Sandra
Davoisne, Carine
Patra, Snehangshu
Sauvage, Frédéric
description Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5–6 nm particle size and offering a high surface area of ca. 280 m2/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.
doi_str_mv 10.1021/ic501067p
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01094375v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609099995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-7abadb875a1b46db5a5fd765e794a4cf710219c529ab25649e5e0c5747eac2623</originalsourceid><addsrcrecordid>eNo9kcFO3DAQhi1UBAvtgRdAvlSih1DbiW18XKCUlVaiKovUmzVJJlqjJA62U2nfvl4tZS4zGn3za_4ZQi44u-ZM8O-ukYwzpacjsuBSsEJy9ucTWTCWa66UOSVnMb4yxkxZqRNyKqTgeUAuSP3b-6HY4DBhgDQHpM-7MW0xukh9R1fBj8W9n7ClyxESRKQb9yRo5wNdu7R181Cs_EhvISUMDiOFsaW_tj75JuP9Lut8Jscd9BG_vOdz8vLwY3P3WKyffq7ulusCyoqnQkMNbX2jJfC6Um0tQXatVhK1qaBqOr23ahopDNRCqsqgRNZIXWmERihRnpNvB90t9HYKboCwsx6cfVyu7b6Xb2SqUsu_PLNXB3YK_m3GmOzgYoN9DyP6OVqumGEmh8zo5Ts61wO2H8r_b5iBrwcAmmhf_RzG7NJyZvcL24_flP8AXUJ9WA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609099995</pqid></control><display><type>article</type><title>Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis</title><source>ACS Publications</source><creator>Andriamiadamanana, Christian ; Laberty-Robert, Christel ; Sougrati, Moulay T ; Casale, Sandra ; Davoisne, Carine ; Patra, Snehangshu ; Sauvage, Frédéric</creator><creatorcontrib>Andriamiadamanana, Christian ; Laberty-Robert, Christel ; Sougrati, Moulay T ; Casale, Sandra ; Davoisne, Carine ; Patra, Snehangshu ; Sauvage, Frédéric</creatorcontrib><description>Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5–6 nm particle size and offering a high surface area of ca. 280 m2/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic501067p</identifier><identifier>PMID: 25211065</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Inorganic chemistry, 2014-10, Vol.53 (19), p.10129-10139</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3346-8243 ; 0000-0003-3740-2807 ; 0000-0002-7740-3209 ; 0000-0001-8660-9367 ; 0000-0002-3213-6223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic501067p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic501067p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25211065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01094375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Andriamiadamanana, Christian</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><creatorcontrib>Sougrati, Moulay T</creatorcontrib><creatorcontrib>Casale, Sandra</creatorcontrib><creatorcontrib>Davoisne, Carine</creatorcontrib><creatorcontrib>Patra, Snehangshu</creatorcontrib><creatorcontrib>Sauvage, Frédéric</creatorcontrib><title>Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5–6 nm particle size and offering a high surface area of ca. 280 m2/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kcFO3DAQhi1UBAvtgRdAvlSih1DbiW18XKCUlVaiKovUmzVJJlqjJA62U2nfvl4tZS4zGn3za_4ZQi44u-ZM8O-ukYwzpacjsuBSsEJy9ucTWTCWa66UOSVnMb4yxkxZqRNyKqTgeUAuSP3b-6HY4DBhgDQHpM-7MW0xukh9R1fBj8W9n7ClyxESRKQb9yRo5wNdu7R181Cs_EhvISUMDiOFsaW_tj75JuP9Lut8Jscd9BG_vOdz8vLwY3P3WKyffq7ulusCyoqnQkMNbX2jJfC6Um0tQXatVhK1qaBqOr23ahopDNRCqsqgRNZIXWmERihRnpNvB90t9HYKboCwsx6cfVyu7b6Xb2SqUsu_PLNXB3YK_m3GmOzgYoN9DyP6OVqumGEmh8zo5Ts61wO2H8r_b5iBrwcAmmhf_RzG7NJyZvcL24_flP8AXUJ9WA</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Andriamiadamanana, Christian</creator><creator>Laberty-Robert, Christel</creator><creator>Sougrati, Moulay T</creator><creator>Casale, Sandra</creator><creator>Davoisne, Carine</creator><creator>Patra, Snehangshu</creator><creator>Sauvage, Frédéric</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3346-8243</orcidid><orcidid>https://orcid.org/0000-0003-3740-2807</orcidid><orcidid>https://orcid.org/0000-0002-7740-3209</orcidid><orcidid>https://orcid.org/0000-0001-8660-9367</orcidid><orcidid>https://orcid.org/0000-0002-3213-6223</orcidid></search><sort><creationdate>20141006</creationdate><title>Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis</title><author>Andriamiadamanana, Christian ; Laberty-Robert, Christel ; Sougrati, Moulay T ; Casale, Sandra ; Davoisne, Carine ; Patra, Snehangshu ; Sauvage, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-7abadb875a1b46db5a5fd765e794a4cf710219c529ab25649e5e0c5747eac2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andriamiadamanana, Christian</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><creatorcontrib>Sougrati, Moulay T</creatorcontrib><creatorcontrib>Casale, Sandra</creatorcontrib><creatorcontrib>Davoisne, Carine</creatorcontrib><creatorcontrib>Patra, Snehangshu</creatorcontrib><creatorcontrib>Sauvage, Frédéric</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andriamiadamanana, Christian</au><au>Laberty-Robert, Christel</au><au>Sougrati, Moulay T</au><au>Casale, Sandra</au><au>Davoisne, Carine</au><au>Patra, Snehangshu</au><au>Sauvage, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2014-10-06</date><risdate>2014</risdate><volume>53</volume><issue>19</issue><spage>10129</spage><epage>10139</epage><pages>10129-10139</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5–6 nm particle size and offering a high surface area of ca. 280 m2/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25211065</pmid><doi>10.1021/ic501067p</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3346-8243</orcidid><orcidid>https://orcid.org/0000-0003-3740-2807</orcidid><orcidid>https://orcid.org/0000-0002-7740-3209</orcidid><orcidid>https://orcid.org/0000-0001-8660-9367</orcidid><orcidid>https://orcid.org/0000-0002-3213-6223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2014-10, Vol.53 (19), p.10129-10139
issn 0020-1669
1520-510X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01094375v1
source ACS Publications
subjects Chemical Sciences
Material chemistry
title Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Synthesis%20of%20Iron-Doped%20Anatase%20TiO2%20for%20Lithium-Ion%20Batteries%20and%20Photocatalysis&rft.jtitle=Inorganic%20chemistry&rft.au=Andriamiadamanana,%20Christian&rft.date=2014-10-06&rft.volume=53&rft.issue=19&rft.spage=10129&rft.epage=10139&rft.pages=10129-10139&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic501067p&rft_dat=%3Cproquest_hal_p%3E1609099995%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609099995&rft_id=info:pmid/25211065&rfr_iscdi=true