About the barotropic compressible quantum Navier–Stokes equations
In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak sol...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2015-11, Vol.128, p.106-121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | Nonlinear analysis |
container_volume | 128 |
creator | Gisclon, M. Lacroix-Violet, I. |
description | In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0. |
doi_str_mv | 10.1016/j.na.2015.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01090191v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15002370</els_id><sourcerecordid>1808091241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM2aEIeEcx3HCVlVAkSoYAInNcpyL6pLGxXYqsfEOvCFPQqIiNqaT7r7_l-4j5JxCQoHmV-ukU0kKlCcgEoD8gExoIVjMU8oPyQRYnsY8y1-PyYn3awCgguUTMp9Vtg9RWGFUKWeDs1ujI203W4fem6rF6L1XXeg30YPaGXTfn19Pwb6hj3A4BGM7f0qOGtV6PPudU_Jye_M8X8TLx7v7-WwZ6wxYiDMQVa0KBqLmKc-AU-C65qrImgaFqCtgNfCGskpBA1joipeiTPVw0LViik3J5b53pVq5dWaj3Ie0ysjFbCnHHVAogZZ0Rwf2Ys9unX3v0Qe5MV5j26oObe8lLaCAkqbZiMIe1c5677D566YgR7dyLTslR7cShBzcDpHrfQSHd0cr0muDncbaONRB1tb8H_4BaFGBlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808091241</pqid></control><display><type>article</type><title>About the barotropic compressible quantum Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gisclon, M. ; Lacroix-Violet, I.</creator><creatorcontrib>Gisclon, M. ; Lacroix-Violet, I.</creatorcontrib><description>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.07.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis of PDEs ; Asymptotic analysis ; Compressibility ; Density ; Global weak solutions ; Mathematical analysis ; Mathematics ; Navier-Stokes equations ; Nonlinearity ; Plancks constant ; Quantum Navier–Stokes equations ; Viscosity</subject><ispartof>Nonlinear analysis, 2015-11, Vol.128, p.106-121</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</citedby><cites>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</cites><orcidid>0009-0004-4512-7774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15002370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01090191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Lacroix-Violet, I.</creatorcontrib><title>About the barotropic compressible quantum Navier–Stokes equations</title><title>Nonlinear analysis</title><description>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</description><subject>Analysis of PDEs</subject><subject>Asymptotic analysis</subject><subject>Compressibility</subject><subject>Density</subject><subject>Global weak solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Nonlinearity</subject><subject>Plancks constant</subject><subject>Quantum Navier–Stokes equations</subject><subject>Viscosity</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM2aEIeEcx3HCVlVAkSoYAInNcpyL6pLGxXYqsfEOvCFPQqIiNqaT7r7_l-4j5JxCQoHmV-ukU0kKlCcgEoD8gExoIVjMU8oPyQRYnsY8y1-PyYn3awCgguUTMp9Vtg9RWGFUKWeDs1ujI203W4fem6rF6L1XXeg30YPaGXTfn19Pwb6hj3A4BGM7f0qOGtV6PPudU_Jye_M8X8TLx7v7-WwZ6wxYiDMQVa0KBqLmKc-AU-C65qrImgaFqCtgNfCGskpBA1joipeiTPVw0LViik3J5b53pVq5dWaj3Ie0ysjFbCnHHVAogZZ0Rwf2Ys9unX3v0Qe5MV5j26oObe8lLaCAkqbZiMIe1c5677D566YgR7dyLTslR7cShBzcDpHrfQSHd0cr0muDncbaONRB1tb8H_4BaFGBlg</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Gisclon, M.</creator><creator>Lacroix-Violet, I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid></search><sort><creationdate>201511</creationdate><title>About the barotropic compressible quantum Navier–Stokes equations</title><author>Gisclon, M. ; Lacroix-Violet, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis of PDEs</topic><topic>Asymptotic analysis</topic><topic>Compressibility</topic><topic>Density</topic><topic>Global weak solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Nonlinearity</topic><topic>Plancks constant</topic><topic>Quantum Navier–Stokes equations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Lacroix-Violet, I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gisclon, M.</au><au>Lacroix-Violet, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the barotropic compressible quantum Navier–Stokes equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-11</date><risdate>2015</risdate><volume>128</volume><spage>106</spage><epage>121</epage><pages>106-121</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.07.006</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2015-11, Vol.128, p.106-121 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01090191v1 |
source | Elsevier ScienceDirect Journals |
subjects | Analysis of PDEs Asymptotic analysis Compressibility Density Global weak solutions Mathematical analysis Mathematics Navier-Stokes equations Nonlinearity Plancks constant Quantum Navier–Stokes equations Viscosity |
title | About the barotropic compressible quantum Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20barotropic%20compressible%20quantum%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Gisclon,%20M.&rft.date=2015-11&rft.volume=128&rft.spage=106&rft.epage=121&rft.pages=106-121&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.07.006&rft_dat=%3Cproquest_hal_p%3E1808091241%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808091241&rft_id=info:pmid/&rft_els_id=S0362546X15002370&rfr_iscdi=true |