About the barotropic compressible quantum Navier–Stokes equations

In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2015-11, Vol.128, p.106-121
Hauptverfasser: Gisclon, M., Lacroix-Violet, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 106
container_title Nonlinear analysis
container_volume 128
creator Gisclon, M.
Lacroix-Violet, I.
description In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.
doi_str_mv 10.1016/j.na.2015.07.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01090191v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15002370</els_id><sourcerecordid>1808091241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM2aEIeEcx3HCVlVAkSoYAInNcpyL6pLGxXYqsfEOvCFPQqIiNqaT7r7_l-4j5JxCQoHmV-ukU0kKlCcgEoD8gExoIVjMU8oPyQRYnsY8y1-PyYn3awCgguUTMp9Vtg9RWGFUKWeDs1ujI203W4fem6rF6L1XXeg30YPaGXTfn19Pwb6hj3A4BGM7f0qOGtV6PPudU_Jye_M8X8TLx7v7-WwZ6wxYiDMQVa0KBqLmKc-AU-C65qrImgaFqCtgNfCGskpBA1joipeiTPVw0LViik3J5b53pVq5dWaj3Ie0ysjFbCnHHVAogZZ0Rwf2Ys9unX3v0Qe5MV5j26oObe8lLaCAkqbZiMIe1c5677D566YgR7dyLTslR7cShBzcDpHrfQSHd0cr0muDncbaONRB1tb8H_4BaFGBlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808091241</pqid></control><display><type>article</type><title>About the barotropic compressible quantum Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gisclon, M. ; Lacroix-Violet, I.</creator><creatorcontrib>Gisclon, M. ; Lacroix-Violet, I.</creatorcontrib><description>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.07.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis of PDEs ; Asymptotic analysis ; Compressibility ; Density ; Global weak solutions ; Mathematical analysis ; Mathematics ; Navier-Stokes equations ; Nonlinearity ; Plancks constant ; Quantum Navier–Stokes equations ; Viscosity</subject><ispartof>Nonlinear analysis, 2015-11, Vol.128, p.106-121</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</citedby><cites>FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</cites><orcidid>0009-0004-4512-7774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15002370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01090191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Lacroix-Violet, I.</creatorcontrib><title>About the barotropic compressible quantum Navier–Stokes equations</title><title>Nonlinear analysis</title><description>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</description><subject>Analysis of PDEs</subject><subject>Asymptotic analysis</subject><subject>Compressibility</subject><subject>Density</subject><subject>Global weak solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Nonlinearity</subject><subject>Plancks constant</subject><subject>Quantum Navier–Stokes equations</subject><subject>Viscosity</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM2aEIeEcx3HCVlVAkSoYAInNcpyL6pLGxXYqsfEOvCFPQqIiNqaT7r7_l-4j5JxCQoHmV-ukU0kKlCcgEoD8gExoIVjMU8oPyQRYnsY8y1-PyYn3awCgguUTMp9Vtg9RWGFUKWeDs1ujI203W4fem6rF6L1XXeg30YPaGXTfn19Pwb6hj3A4BGM7f0qOGtV6PPudU_Jye_M8X8TLx7v7-WwZ6wxYiDMQVa0KBqLmKc-AU-C65qrImgaFqCtgNfCGskpBA1joipeiTPVw0LViik3J5b53pVq5dWaj3Ie0ysjFbCnHHVAogZZ0Rwf2Ys9unX3v0Qe5MV5j26oObe8lLaCAkqbZiMIe1c5677D566YgR7dyLTslR7cShBzcDpHrfQSHd0cr0muDncbaONRB1tb8H_4BaFGBlg</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Gisclon, M.</creator><creator>Lacroix-Violet, I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid></search><sort><creationdate>201511</creationdate><title>About the barotropic compressible quantum Navier–Stokes equations</title><author>Gisclon, M. ; Lacroix-Violet, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-407bda8307d525405105cd5a84ffe77db03d05f13ba0f0e8cb59792cdb0cda3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis of PDEs</topic><topic>Asymptotic analysis</topic><topic>Compressibility</topic><topic>Density</topic><topic>Global weak solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Nonlinearity</topic><topic>Plancks constant</topic><topic>Quantum Navier–Stokes equations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Lacroix-Violet, I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gisclon, M.</au><au>Lacroix-Violet, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the barotropic compressible quantum Navier–Stokes equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-11</date><risdate>2015</risdate><volume>128</volume><spage>106</spage><epage>121</epage><pages>106-121</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we consider the barotropic compressible quantum Navier–Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanishes. Following recent works on degenerate compressible Navier–Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ε tends to 0.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.07.006</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2015-11, Vol.128, p.106-121
issn 0362-546X
1873-5215
language eng
recordid cdi_hal_primary_oai_HAL_hal_01090191v1
source Elsevier ScienceDirect Journals
subjects Analysis of PDEs
Asymptotic analysis
Compressibility
Density
Global weak solutions
Mathematical analysis
Mathematics
Navier-Stokes equations
Nonlinearity
Plancks constant
Quantum Navier–Stokes equations
Viscosity
title About the barotropic compressible quantum Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20barotropic%20compressible%20quantum%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Gisclon,%20M.&rft.date=2015-11&rft.volume=128&rft.spage=106&rft.epage=121&rft.pages=106-121&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.07.006&rft_dat=%3Cproquest_hal_p%3E1808091241%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808091241&rft_id=info:pmid/&rft_els_id=S0362546X15002370&rfr_iscdi=true