A unified framework for local visual descriptors evaluation
Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive codin...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2015-04, Vol.48 (4), p.1174-1184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1184 |
---|---|
container_issue | 4 |
container_start_page | 1174 |
container_title | Pattern recognition |
container_volume | 48 |
creator | Kihl, Olivier Picard, David Gosselin, Philippe-Henri |
description | Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature.
•We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework. |
doi_str_mv | 10.1016/j.patcog.2014.11.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01089310v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003132031400483X</els_id><sourcerecordid>1669845466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw896qF1pkmzDYKwiP9gwYueQzaZatbuZk3aFb-9XSoePT2Y-b03zGPsHKFAQHm1Krams-GtKAFFgVgA8gM2wXrG8wpFecgmABxzXgI_ZicprQBwNiwm7Hqe9RvfeHJZE82avkL8yJoQszZY02Y7n_pBHCUb_bYLMWW0M21vOh82p-yoMW2is1-dstf7u5fbx3zx_PB0O1_kVtSqy52o6kohmqUQhFCDrJUiNI1SWDXGcbBGWHTgHEmqyCBIx8t6aaR1jSr5lF2Oue-m1dvo1yZ-62C8fpwv9H4GQ6riCDsc2IuR3cbw2VPq9NonS21rNhT6pFFKVYtKSDmgYkRtDClFav6yEfS-V73SY69636tGHA7xwXYz2mh4eecp6mQ9bSw5H8l22gX_f8APobmCEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669845466</pqid></control><display><type>article</type><title>A unified framework for local visual descriptors evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</creator><creatorcontrib>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</creatorcontrib><description>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature.
•We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2014.11.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Agglomeration ; Coding ; Computer Science ; Computer Vision and Pattern Recognition ; Design engineering ; Feature representation ; Grounds ; Image processing and computer vision ; Image/video retrieval ; Machine Learning ; Object recognition ; Pattern recognition ; Statistics ; Video analysis ; Vision and scene understanding ; Visual ; Volatile organic compounds</subject><ispartof>Pattern recognition, 2015-04, Vol.48 (4), p.1174-1184</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</citedby><cites>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</cites><orcidid>0000-0002-6296-4222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2014.11.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01089310$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kihl, Olivier</creatorcontrib><creatorcontrib>Picard, David</creatorcontrib><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><title>A unified framework for local visual descriptors evaluation</title><title>Pattern recognition</title><description>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature.
•We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</description><subject>Agglomeration</subject><subject>Coding</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Design engineering</subject><subject>Feature representation</subject><subject>Grounds</subject><subject>Image processing and computer vision</subject><subject>Image/video retrieval</subject><subject>Machine Learning</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Statistics</subject><subject>Video analysis</subject><subject>Vision and scene understanding</subject><subject>Visual</subject><subject>Volatile organic compounds</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw896qF1pkmzDYKwiP9gwYueQzaZatbuZk3aFb-9XSoePT2Y-b03zGPsHKFAQHm1Krams-GtKAFFgVgA8gM2wXrG8wpFecgmABxzXgI_ZicprQBwNiwm7Hqe9RvfeHJZE82avkL8yJoQszZY02Y7n_pBHCUb_bYLMWW0M21vOh82p-yoMW2is1-dstf7u5fbx3zx_PB0O1_kVtSqy52o6kohmqUQhFCDrJUiNI1SWDXGcbBGWHTgHEmqyCBIx8t6aaR1jSr5lF2Oue-m1dvo1yZ-62C8fpwv9H4GQ6riCDsc2IuR3cbw2VPq9NonS21rNhT6pFFKVYtKSDmgYkRtDClFav6yEfS-V73SY69636tGHA7xwXYz2mh4eecp6mQ9bSw5H8l22gX_f8APobmCEw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Kihl, Olivier</creator><creator>Picard, David</creator><creator>Gosselin, Philippe-Henri</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6296-4222</orcidid></search><sort><creationdate>20150401</creationdate><title>A unified framework for local visual descriptors evaluation</title><author>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agglomeration</topic><topic>Coding</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Design engineering</topic><topic>Feature representation</topic><topic>Grounds</topic><topic>Image processing and computer vision</topic><topic>Image/video retrieval</topic><topic>Machine Learning</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Statistics</topic><topic>Video analysis</topic><topic>Vision and scene understanding</topic><topic>Visual</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kihl, Olivier</creatorcontrib><creatorcontrib>Picard, David</creatorcontrib><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kihl, Olivier</au><au>Picard, David</au><au>Gosselin, Philippe-Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified framework for local visual descriptors evaluation</atitle><jtitle>Pattern recognition</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>48</volume><issue>4</issue><spage>1174</spage><epage>1184</epage><pages>1174-1184</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature.
•We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2014.11.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6296-4222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2015-04, Vol.48 (4), p.1174-1184 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01089310v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Agglomeration Coding Computer Science Computer Vision and Pattern Recognition Design engineering Feature representation Grounds Image processing and computer vision Image/video retrieval Machine Learning Object recognition Pattern recognition Statistics Video analysis Vision and scene understanding Visual Volatile organic compounds |
title | A unified framework for local visual descriptors evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20framework%20for%20local%20visual%20descriptors%20evaluation&rft.jtitle=Pattern%20recognition&rft.au=Kihl,%20Olivier&rft.date=2015-04-01&rft.volume=48&rft.issue=4&rft.spage=1174&rft.epage=1184&rft.pages=1174-1184&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2014.11.013&rft_dat=%3Cproquest_hal_p%3E1669845466%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669845466&rft_id=info:pmid/&rft_els_id=S003132031400483X&rfr_iscdi=true |