A unified framework for local visual descriptors evaluation

Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive codin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2015-04, Vol.48 (4), p.1174-1184
Hauptverfasser: Kihl, Olivier, Picard, David, Gosselin, Philippe-Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1184
container_issue 4
container_start_page 1174
container_title Pattern recognition
container_volume 48
creator Kihl, Olivier
Picard, David
Gosselin, Philippe-Henri
description Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. •We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.
doi_str_mv 10.1016/j.patcog.2014.11.013
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01089310v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003132031400483X</els_id><sourcerecordid>1669845466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw896qF1pkmzDYKwiP9gwYueQzaZatbuZk3aFb-9XSoePT2Y-b03zGPsHKFAQHm1Krams-GtKAFFgVgA8gM2wXrG8wpFecgmABxzXgI_ZicprQBwNiwm7Hqe9RvfeHJZE82avkL8yJoQszZY02Y7n_pBHCUb_bYLMWW0M21vOh82p-yoMW2is1-dstf7u5fbx3zx_PB0O1_kVtSqy52o6kohmqUQhFCDrJUiNI1SWDXGcbBGWHTgHEmqyCBIx8t6aaR1jSr5lF2Oue-m1dvo1yZ-62C8fpwv9H4GQ6riCDsc2IuR3cbw2VPq9NonS21rNhT6pFFKVYtKSDmgYkRtDClFav6yEfS-V73SY69636tGHA7xwXYz2mh4eecp6mQ9bSw5H8l22gX_f8APobmCEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669845466</pqid></control><display><type>article</type><title>A unified framework for local visual descriptors evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</creator><creatorcontrib>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</creatorcontrib><description>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. •We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2014.11.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Agglomeration ; Coding ; Computer Science ; Computer Vision and Pattern Recognition ; Design engineering ; Feature representation ; Grounds ; Image processing and computer vision ; Image/video retrieval ; Machine Learning ; Object recognition ; Pattern recognition ; Statistics ; Video analysis ; Vision and scene understanding ; Visual ; Volatile organic compounds</subject><ispartof>Pattern recognition, 2015-04, Vol.48 (4), p.1174-1184</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</citedby><cites>FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</cites><orcidid>0000-0002-6296-4222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2014.11.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01089310$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kihl, Olivier</creatorcontrib><creatorcontrib>Picard, David</creatorcontrib><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><title>A unified framework for local visual descriptors evaluation</title><title>Pattern recognition</title><description>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. •We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</description><subject>Agglomeration</subject><subject>Coding</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Design engineering</subject><subject>Feature representation</subject><subject>Grounds</subject><subject>Image processing and computer vision</subject><subject>Image/video retrieval</subject><subject>Machine Learning</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Statistics</subject><subject>Video analysis</subject><subject>Vision and scene understanding</subject><subject>Visual</subject><subject>Volatile organic compounds</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw896qF1pkmzDYKwiP9gwYueQzaZatbuZk3aFb-9XSoePT2Y-b03zGPsHKFAQHm1Krams-GtKAFFgVgA8gM2wXrG8wpFecgmABxzXgI_ZicprQBwNiwm7Hqe9RvfeHJZE82avkL8yJoQszZY02Y7n_pBHCUb_bYLMWW0M21vOh82p-yoMW2is1-dstf7u5fbx3zx_PB0O1_kVtSqy52o6kohmqUQhFCDrJUiNI1SWDXGcbBGWHTgHEmqyCBIx8t6aaR1jSr5lF2Oue-m1dvo1yZ-62C8fpwv9H4GQ6riCDsc2IuR3cbw2VPq9NonS21rNhT6pFFKVYtKSDmgYkRtDClFav6yEfS-V73SY69636tGHA7xwXYz2mh4eecp6mQ9bSw5H8l22gX_f8APobmCEw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Kihl, Olivier</creator><creator>Picard, David</creator><creator>Gosselin, Philippe-Henri</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6296-4222</orcidid></search><sort><creationdate>20150401</creationdate><title>A unified framework for local visual descriptors evaluation</title><author>Kihl, Olivier ; Picard, David ; Gosselin, Philippe-Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d4585911ab44e10806899e1af9915fad30ca4c1d0dde6e5ea106d328ba6cdf923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agglomeration</topic><topic>Coding</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Design engineering</topic><topic>Feature representation</topic><topic>Grounds</topic><topic>Image processing and computer vision</topic><topic>Image/video retrieval</topic><topic>Machine Learning</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Statistics</topic><topic>Video analysis</topic><topic>Vision and scene understanding</topic><topic>Visual</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kihl, Olivier</creatorcontrib><creatorcontrib>Picard, David</creatorcontrib><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kihl, Olivier</au><au>Picard, David</au><au>Gosselin, Philippe-Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified framework for local visual descriptors evaluation</atitle><jtitle>Pattern recognition</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>48</volume><issue>4</issue><spage>1174</spage><epage>1184</epage><pages>1174-1184</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. •We propose a new framework to design local visual descriptors.•Descriptors are decomposed in primitive extraction, coding and aggregation.•Our framework can explain the most popular descriptors such as HOG, HOF, SURF.•The framework allows us a rigorous exploration of the possible combinations of primitives, coding and aggregation.•New descriptors are easily obtained by changing one of the steps of our framework.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2014.11.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6296-4222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2015-04, Vol.48 (4), p.1174-1184
issn 0031-3203
1873-5142
language eng
recordid cdi_hal_primary_oai_HAL_hal_01089310v1
source ScienceDirect Journals (5 years ago - present)
subjects Agglomeration
Coding
Computer Science
Computer Vision and Pattern Recognition
Design engineering
Feature representation
Grounds
Image processing and computer vision
Image/video retrieval
Machine Learning
Object recognition
Pattern recognition
Statistics
Video analysis
Vision and scene understanding
Visual
Volatile organic compounds
title A unified framework for local visual descriptors evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20framework%20for%20local%20visual%20descriptors%20evaluation&rft.jtitle=Pattern%20recognition&rft.au=Kihl,%20Olivier&rft.date=2015-04-01&rft.volume=48&rft.issue=4&rft.spage=1174&rft.epage=1184&rft.pages=1174-1184&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2014.11.013&rft_dat=%3Cproquest_hal_p%3E1669845466%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669845466&rft_id=info:pmid/&rft_els_id=S003132031400483X&rfr_iscdi=true