Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities
The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not rea...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2015-01, Vol.63, p.99-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | |
container_start_page | 99 |
container_title | Computers and geotechnics |
container_volume | 63 |
creator | Vitel, M. Rouabhi, A. Tijani, M. Guérin, F. |
description | The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems. |
doi_str_mv | 10.1016/j.compgeo.2014.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01086963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X14001542</els_id><sourcerecordid>1808368008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVGVSp1M-wiVWDYLO_zYGFZVFLVNpYm6aaXuEIXLDCOPcQBPlD597Zmk22yAyznfka4OQh8pqSmh4npf23gYtxBrRmhTE1kT0rxBKyo7XnWC8wu0IkyIirfs9zt0mfOezJySaoXKfXTQh2GLd2AKLskM2UPCf6A8AgzYYJ8A_gIewwjYDA6XHeA8pRSnwS3c9vTCbkrLZFIJPthg-hfhxJ8kW8IxlAD5PXrrTZ_hw_O9Rr--fvl5e1dtfnz7fnuzqSzvRKmgkY1S0DFmfdMwz4WnXcubrvUCHGesVdZLqhzrlCONtwRkS72STPrWMsHX6OqcuzO9HlM4mPSkown67majlz9CiRRK8COdvZ_O3jHFhwly0YeQLfS9GSBOWVNJJBeSzOcatWerTTHnBP5_NiV6aUTv9XMjemlEE6nnRmbu85mDeedjgKSzDTBYcCGBLdrF8ErCPxlcmEI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808368008</pqid></control><display><type>article</type><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</creator><creatorcontrib>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</creatorcontrib><description>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2014.08.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial ground freezing ; Earth Sciences ; Finite element ; Heat transfer ; Latent heat ; Least-squares finite element ; Sciences of the Universe</subject><ispartof>Computers and geotechnics, 2015-01, Vol.63, p.99-111</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</citedby><cites>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2014.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01086963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitel, M.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Tijani, M.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><title>Computers and geotechnics</title><description>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</description><subject>Artificial ground freezing</subject><subject>Earth Sciences</subject><subject>Finite element</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Least-squares finite element</subject><subject>Sciences of the Universe</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVGVSp1M-wiVWDYLO_zYGFZVFLVNpYm6aaXuEIXLDCOPcQBPlD597Zmk22yAyznfka4OQh8pqSmh4npf23gYtxBrRmhTE1kT0rxBKyo7XnWC8wu0IkyIirfs9zt0mfOezJySaoXKfXTQh2GLd2AKLskM2UPCf6A8AgzYYJ8A_gIewwjYDA6XHeA8pRSnwS3c9vTCbkrLZFIJPthg-hfhxJ8kW8IxlAD5PXrrTZ_hw_O9Rr--fvl5e1dtfnz7fnuzqSzvRKmgkY1S0DFmfdMwz4WnXcubrvUCHGesVdZLqhzrlCONtwRkS72STPrWMsHX6OqcuzO9HlM4mPSkown67majlz9CiRRK8COdvZ_O3jHFhwly0YeQLfS9GSBOWVNJJBeSzOcatWerTTHnBP5_NiV6aUTv9XMjemlEE6nnRmbu85mDeedjgKSzDTBYcCGBLdrF8ErCPxlcmEI</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Vitel, M.</creator><creator>Rouabhi, A.</creator><creator>Tijani, M.</creator><creator>Guérin, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>201501</creationdate><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><author>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial ground freezing</topic><topic>Earth Sciences</topic><topic>Finite element</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Least-squares finite element</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitel, M.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Tijani, M.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitel, M.</au><au>Rouabhi, A.</au><au>Tijani, M.</au><au>Guérin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</atitle><jtitle>Computers and geotechnics</jtitle><date>2015-01</date><risdate>2015</risdate><volume>63</volume><spage>99</spage><epage>111</epage><pages>99-111</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2014.08.004</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-352X |
ispartof | Computers and geotechnics, 2015-01, Vol.63, p.99-111 |
issn | 0266-352X 1873-7633 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01086963v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Artificial ground freezing Earth Sciences Finite element Heat transfer Latent heat Least-squares finite element Sciences of the Universe |
title | Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20heat%20transfer%20between%20a%20freeze%20pipe%20and%20the%20surrounding%20ground%20during%20artificial%20ground%20freezing%20activities&rft.jtitle=Computers%20and%20geotechnics&rft.au=Vitel,%20M.&rft.date=2015-01&rft.volume=63&rft.spage=99&rft.epage=111&rft.pages=99-111&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2014.08.004&rft_dat=%3Cproquest_hal_p%3E1808368008%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808368008&rft_id=info:pmid/&rft_els_id=S0266352X14001542&rfr_iscdi=true |