Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities

The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2015-01, Vol.63, p.99-111
Hauptverfasser: Vitel, M., Rouabhi, A., Tijani, M., Guérin, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 99
container_title Computers and geotechnics
container_volume 63
creator Vitel, M.
Rouabhi, A.
Tijani, M.
Guérin, F.
description The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.
doi_str_mv 10.1016/j.compgeo.2014.08.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01086963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X14001542</els_id><sourcerecordid>1808368008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVGVSp1M-wiVWDYLO_zYGFZVFLVNpYm6aaXuEIXLDCOPcQBPlD597Zmk22yAyznfka4OQh8pqSmh4npf23gYtxBrRmhTE1kT0rxBKyo7XnWC8wu0IkyIirfs9zt0mfOezJySaoXKfXTQh2GLd2AKLskM2UPCf6A8AgzYYJ8A_gIewwjYDA6XHeA8pRSnwS3c9vTCbkrLZFIJPthg-hfhxJ8kW8IxlAD5PXrrTZ_hw_O9Rr--fvl5e1dtfnz7fnuzqSzvRKmgkY1S0DFmfdMwz4WnXcubrvUCHGesVdZLqhzrlCONtwRkS72STPrWMsHX6OqcuzO9HlM4mPSkown67majlz9CiRRK8COdvZ_O3jHFhwly0YeQLfS9GSBOWVNJJBeSzOcatWerTTHnBP5_NiV6aUTv9XMjemlEE6nnRmbu85mDeedjgKSzDTBYcCGBLdrF8ErCPxlcmEI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808368008</pqid></control><display><type>article</type><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</creator><creatorcontrib>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</creatorcontrib><description>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2014.08.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial ground freezing ; Earth Sciences ; Finite element ; Heat transfer ; Latent heat ; Least-squares finite element ; Sciences of the Universe</subject><ispartof>Computers and geotechnics, 2015-01, Vol.63, p.99-111</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</citedby><cites>FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2014.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01086963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitel, M.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Tijani, M.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><title>Computers and geotechnics</title><description>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</description><subject>Artificial ground freezing</subject><subject>Earth Sciences</subject><subject>Finite element</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Least-squares finite element</subject><subject>Sciences of the Universe</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVGVSp1M-wiVWDYLO_zYGFZVFLVNpYm6aaXuEIXLDCOPcQBPlD597Zmk22yAyznfka4OQh8pqSmh4npf23gYtxBrRmhTE1kT0rxBKyo7XnWC8wu0IkyIirfs9zt0mfOezJySaoXKfXTQh2GLd2AKLskM2UPCf6A8AgzYYJ8A_gIewwjYDA6XHeA8pRSnwS3c9vTCbkrLZFIJPthg-hfhxJ8kW8IxlAD5PXrrTZ_hw_O9Rr--fvl5e1dtfnz7fnuzqSzvRKmgkY1S0DFmfdMwz4WnXcubrvUCHGesVdZLqhzrlCONtwRkS72STPrWMsHX6OqcuzO9HlM4mPSkown67majlz9CiRRK8COdvZ_O3jHFhwly0YeQLfS9GSBOWVNJJBeSzOcatWerTTHnBP5_NiV6aUTv9XMjemlEE6nnRmbu85mDeedjgKSzDTBYcCGBLdrF8ErCPxlcmEI</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Vitel, M.</creator><creator>Rouabhi, A.</creator><creator>Tijani, M.</creator><creator>Guérin, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>201501</creationdate><title>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</title><author>Vitel, M. ; Rouabhi, A. ; Tijani, M. ; Guérin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e48499e722cf442f36f1753475f6ed32259cf819d279d04fc0e851f9828f5c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial ground freezing</topic><topic>Earth Sciences</topic><topic>Finite element</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Least-squares finite element</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitel, M.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Tijani, M.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitel, M.</au><au>Rouabhi, A.</au><au>Tijani, M.</au><au>Guérin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities</atitle><jtitle>Computers and geotechnics</jtitle><date>2015-01</date><risdate>2015</risdate><volume>63</volume><spage>99</spage><epage>111</epage><pages>99-111</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>The artificial ground freezing method (AGF) is widely used in civil and mining engineering. In AGF numerical models, the thermal boundary conditions at the freeze pipe wall, whether they be expressed in temperature or in flux, are generally determined based on in situ measurements, which are not readily available. The purpose of this paper is to study the complete heat transfer problem in order to develop a thermal model that can be easily used in field applications. In this numerical model, the freeze pipe and the surrounding ground are considered in a coupled way. External data of temperature or flux at the pipe wall is therefore not needed to predict the temperature evolution in the ground. Moreover, the developed model can be used to conduct parametric studies on operating conditions, refrigerant type, system geometry or ground properties. Indeed, the reduction of the heat transfer problems in the ground and in the pipe into highly time-saving 1D problems allows the rapid resolution of many calculations. Then, the developed model can also find its use in the optimization and the design of AGF systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2014.08.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2015-01, Vol.63, p.99-111
issn 0266-352X
1873-7633
language eng
recordid cdi_hal_primary_oai_HAL_hal_01086963v1
source Access via ScienceDirect (Elsevier)
subjects Artificial ground freezing
Earth Sciences
Finite element
Heat transfer
Latent heat
Least-squares finite element
Sciences of the Universe
title Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20heat%20transfer%20between%20a%20freeze%20pipe%20and%20the%20surrounding%20ground%20during%20artificial%20ground%20freezing%20activities&rft.jtitle=Computers%20and%20geotechnics&rft.au=Vitel,%20M.&rft.date=2015-01&rft.volume=63&rft.spage=99&rft.epage=111&rft.pages=99-111&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2014.08.004&rft_dat=%3Cproquest_hal_p%3E1808368008%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808368008&rft_id=info:pmid/&rft_els_id=S0266352X14001542&rfr_iscdi=true