Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3

In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2014-10, Vol.19 (10), p.3492-3512
Hauptverfasser: Demoures, Francois, Gay-Balmaz, Francois, Kobilarov, Marin, Ratiu, Tudor S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3512
container_issue 10
container_start_page 3492
container_title Communications in nonlinear science & numerical simulation
container_volume 19
creator Demoures, Francois
Gay-Balmaz, Francois
Kobilarov, Marin
Ratiu, Tudor S.
description In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. (C) 2014 Elsevier B.V. All rights reserved.
doi_str_mv 10.1016/j.cnsns.2014.02.032
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01086681v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01086681v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-5a8860a4349c76e3f0c598119293254c13b1e0fd116f659153cc4e7d00ba02263</originalsourceid><addsrcrecordid>eNotTMtKw0AUHUTBWv0CN7N1kXjvvDJZlqJWiAiibsPtdNJOyaNMpmL_3oguDudwXozdIuQIaO73uevHfswFoMpB5CDFGZuhLWxWiEKdTxqgyHQB6pJdjeMeplWp1Yx9vhzbFMZTd2i9S8HxKni-jcPxwL8oBkph6KnloU9-GykNkTcTiG_90PkUg6O2PXH_TS7xtaduavK3TF6zi4ba0d_885x9PD68L1dZ9fr0vFxU2Q6xTJkmaw2Qkqp0hfGyAadLO0WilEIrh3KNHpoNommMLlFL55QvNgBrAiGMnLO7v98dtfUhho7iqR4o1KtFVf96gGCNsfiF8gekCVW7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3</title><source>Access via ScienceDirect (Elsevier)</source><creator>Demoures, Francois ; Gay-Balmaz, Francois ; Kobilarov, Marin ; Ratiu, Tudor S.</creator><creatorcontrib>Demoures, Francois ; Gay-Balmaz, Francois ; Kobilarov, Marin ; Ratiu, Tudor S.</creatorcontrib><description>In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. (C) 2014 Elsevier B.V. All rights reserved.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2014.02.032</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Mathematical Physics ; Mathematics</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2014-10, Vol.19 (10), p.3492-3512</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01086681$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Demoures, Francois</creatorcontrib><creatorcontrib>Gay-Balmaz, Francois</creatorcontrib><creatorcontrib>Kobilarov, Marin</creatorcontrib><creatorcontrib>Ratiu, Tudor S.</creatorcontrib><title>Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. (C) 2014 Elsevier B.V. All rights reserved.</description><subject>Mathematical Physics</subject><subject>Mathematics</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotTMtKw0AUHUTBWv0CN7N1kXjvvDJZlqJWiAiibsPtdNJOyaNMpmL_3oguDudwXozdIuQIaO73uevHfswFoMpB5CDFGZuhLWxWiEKdTxqgyHQB6pJdjeMeplWp1Yx9vhzbFMZTd2i9S8HxKni-jcPxwL8oBkph6KnloU9-GykNkTcTiG_90PkUg6O2PXH_TS7xtaduavK3TF6zi4ba0d_885x9PD68L1dZ9fr0vFxU2Q6xTJkmaw2Qkqp0hfGyAadLO0WilEIrh3KNHpoNommMLlFL55QvNgBrAiGMnLO7v98dtfUhho7iqR4o1KtFVf96gGCNsfiF8gekCVW7</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Demoures, Francois</creator><creator>Gay-Balmaz, Francois</creator><creator>Kobilarov, Marin</creator><creator>Ratiu, Tudor S.</creator><general>Elsevier</general><scope>1XC</scope></search><sort><creationdate>20141001</creationdate><title>Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3</title><author>Demoures, Francois ; Gay-Balmaz, Francois ; Kobilarov, Marin ; Ratiu, Tudor S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-5a8860a4349c76e3f0c598119293254c13b1e0fd116f659153cc4e7d00ba02263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematical Physics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demoures, Francois</creatorcontrib><creatorcontrib>Gay-Balmaz, Francois</creatorcontrib><creatorcontrib>Kobilarov, Marin</creatorcontrib><creatorcontrib>Ratiu, Tudor S.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demoures, Francois</au><au>Gay-Balmaz, Francois</au><au>Kobilarov, Marin</au><au>Ratiu, Tudor S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>19</volume><issue>10</issue><spage>3492</spage><epage>3512</epage><pages>3492-3512</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. (C) 2014 Elsevier B.V. All rights reserved.</abstract><pub>Elsevier</pub><doi>10.1016/j.cnsns.2014.02.032</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2014-10, Vol.19 (10), p.3492-3512
issn 1007-5704
1878-7274
language eng
recordid cdi_hal_primary_oai_HAL_hal_01086681v1
source Access via ScienceDirect (Elsevier)
subjects Mathematical Physics
Mathematics
title Multisymplectic Lie group variational integrator for a geometrically exact beam in R-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisymplectic%20Lie%20group%20variational%20integrator%20for%20a%20geometrically%20exact%20beam%20in%20R-3&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Demoures,%20Francois&rft.date=2014-10-01&rft.volume=19&rft.issue=10&rft.spage=3492&rft.epage=3512&rft.pages=3492-3512&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2014.02.032&rft_dat=%3Chal%3Eoai_HAL_hal_01086681v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true