Lower bound static approach for the yield design of thick plates

SUMMARYThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear‐bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five‐dimensional space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2014-12, Vol.100 (11), p.814-833
Hauptverfasser: Bleyer, J., de Buhan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 11
container_start_page 814
container_title International journal for numerical methods in engineering
container_volume 100
creator Bleyer, J.
de Buhan, P.
description SUMMARYThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear‐bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five‐dimensional space of bending moment and shear force, are considered, one of them taking into account the interaction between bending and shear resistances. The criteria are chosen to be sufficiently simple so that the resulting optimization problem can be formulated as a second‐order cone programming problem (SOCP), which is solved by the dedicated solver MOSEK. The efficiency of the proposed finite element is illustrated by means of numerical examples on different plate geometries, for which the thin plate solutions as well as the pure shear solutions are accurately obtained as two different limit cases of the plate slenderness ratio. In particular, the proposed element exhibits a good behavior in the thin plate limit. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4776
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01082202v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642253972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4696-14327598d9366f10f5a88481690f805d6781850b936af86514635bee98726a383</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq4f4E8IeNFDdZI0XzeXZa1K1YsieAnZNnWj3XZtWnX_vVlWFDwNzDzMMC9CRwTOCAA9bxbuLJVSbKERAS0ToCC30SiOdMK1IrtoL4RXAEI4sBG6yNtP1-FZOzQlDr3tfYHtctm1tpjjqu1wP3d45V1d4tIF_9Lgtoo9X7zhZW17Fw7QTmXr4A5_6j56vJw-TK6S_D67nozzpEiFFglJGZXxfqmZEBWBilulUkWEhkoBL4VURHGYxbGtlOAkFYzPnNNKUmGZYvvodLN3bmuz7PzCdivTWm-uxrlZ94CAohToB4n2ZGPjH--DC71Z-FC4uraNa4dgiEgp5UxLGunxP_raDl0TP4mKUkY00yyqZKM-fe1Wv-cJmHXmJmZu1pmbu9vpuv55H3r39ett92aEZJKbp7vMZHmW3aTPN0azb4lVgFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622319393</pqid></control><display><type>article</type><title>Lower bound static approach for the yield design of thick plates</title><source>Wiley Blackwell Journals</source><creator>Bleyer, J. ; de Buhan, P.</creator><creatorcontrib>Bleyer, J. ; de Buhan, P.</creatorcontrib><description>SUMMARYThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear‐bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five‐dimensional space of bending moment and shear force, are considered, one of them taking into account the interaction between bending and shear resistances. The criteria are chosen to be sufficiently simple so that the resulting optimization problem can be formulated as a second‐order cone programming problem (SOCP), which is solved by the dedicated solver MOSEK. The efficiency of the proposed finite element is illustrated by means of numerical examples on different plate geometries, for which the thin plate solutions as well as the pure shear solutions are accurately obtained as two different limit cases of the plate slenderness ratio. In particular, the proposed element exhibits a good behavior in the thin plate limit. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4776</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Bending moments ; Criteria ; Design engineering ; finite element method ; limit analysis ; lower bound ; Materials and structures in mechanics ; Mathematical analysis ; Mathematical models ; Mechanics ; Physics ; second-order cone programming ; Shear ; Thick plates ; Thin plates ; yield design</subject><ispartof>International journal for numerical methods in engineering, 2014-12, Vol.100 (11), p.814-833</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4696-14327598d9366f10f5a88481690f805d6781850b936af86514635bee98726a383</citedby><orcidid>0000-0001-8212-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4776$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4776$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01082202$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bleyer, J.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><title>Lower bound static approach for the yield design of thick plates</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear‐bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five‐dimensional space of bending moment and shear force, are considered, one of them taking into account the interaction between bending and shear resistances. The criteria are chosen to be sufficiently simple so that the resulting optimization problem can be formulated as a second‐order cone programming problem (SOCP), which is solved by the dedicated solver MOSEK. The efficiency of the proposed finite element is illustrated by means of numerical examples on different plate geometries, for which the thin plate solutions as well as the pure shear solutions are accurately obtained as two different limit cases of the plate slenderness ratio. In particular, the proposed element exhibits a good behavior in the thin plate limit. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Bending moments</subject><subject>Criteria</subject><subject>Design engineering</subject><subject>finite element method</subject><subject>limit analysis</subject><subject>lower bound</subject><subject>Materials and structures in mechanics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>second-order cone programming</subject><subject>Shear</subject><subject>Thick plates</subject><subject>Thin plates</subject><subject>yield design</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LxDAQBuAgCq4f4E8IeNFDdZI0XzeXZa1K1YsieAnZNnWj3XZtWnX_vVlWFDwNzDzMMC9CRwTOCAA9bxbuLJVSbKERAS0ToCC30SiOdMK1IrtoL4RXAEI4sBG6yNtP1-FZOzQlDr3tfYHtctm1tpjjqu1wP3d45V1d4tIF_9Lgtoo9X7zhZW17Fw7QTmXr4A5_6j56vJw-TK6S_D67nozzpEiFFglJGZXxfqmZEBWBilulUkWEhkoBL4VURHGYxbGtlOAkFYzPnNNKUmGZYvvodLN3bmuz7PzCdivTWm-uxrlZ94CAohToB4n2ZGPjH--DC71Z-FC4uraNa4dgiEgp5UxLGunxP_raDl0TP4mKUkY00yyqZKM-fe1Wv-cJmHXmJmZu1pmbu9vpuv55H3r39ett92aEZJKbp7vMZHmW3aTPN0azb4lVgFY</recordid><startdate>20141214</startdate><enddate>20141214</enddate><creator>Bleyer, J.</creator><creator>de Buhan, P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8212-9921</orcidid></search><sort><creationdate>20141214</creationdate><title>Lower bound static approach for the yield design of thick plates</title><author>Bleyer, J. ; de Buhan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4696-14327598d9366f10f5a88481690f805d6781850b936af86514635bee98726a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bending moments</topic><topic>Criteria</topic><topic>Design engineering</topic><topic>finite element method</topic><topic>limit analysis</topic><topic>lower bound</topic><topic>Materials and structures in mechanics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>second-order cone programming</topic><topic>Shear</topic><topic>Thick plates</topic><topic>Thin plates</topic><topic>yield design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleyer, J.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleyer, J.</au><au>de Buhan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bound static approach for the yield design of thick plates</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2014-12-14</date><risdate>2014</risdate><volume>100</volume><issue>11</issue><spage>814</spage><epage>833</epage><pages>814-833</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYThe present work addresses the lower bound limit analysis (or yield design) of thick plates under shear‐bending interaction. Equilibrium finite elements are used to discretize the bending moment and the shear force fields. Different strength criteria, formulated in the five‐dimensional space of bending moment and shear force, are considered, one of them taking into account the interaction between bending and shear resistances. The criteria are chosen to be sufficiently simple so that the resulting optimization problem can be formulated as a second‐order cone programming problem (SOCP), which is solved by the dedicated solver MOSEK. The efficiency of the proposed finite element is illustrated by means of numerical examples on different plate geometries, for which the thin plate solutions as well as the pure shear solutions are accurately obtained as two different limit cases of the plate slenderness ratio. In particular, the proposed element exhibits a good behavior in the thin plate limit. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4776</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8212-9921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2014-12, Vol.100 (11), p.814-833
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_01082202v1
source Wiley Blackwell Journals
subjects Bending moments
Criteria
Design engineering
finite element method
limit analysis
lower bound
Materials and structures in mechanics
Mathematical analysis
Mathematical models
Mechanics
Physics
second-order cone programming
Shear
Thick plates
Thin plates
yield design
title Lower bound static approach for the yield design of thick plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bound%20static%20approach%20for%20the%20yield%20design%20of%20thick%20plates&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Bleyer,%20J.&rft.date=2014-12-14&rft.volume=100&rft.issue=11&rft.spage=814&rft.epage=833&rft.pages=814-833&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4776&rft_dat=%3Cproquest_hal_p%3E1642253972%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622319393&rft_id=info:pmid/&rfr_iscdi=true