Discrete Schur-constant models

This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2015-09, Vol.140 (September 2015), p.343-362
Hauptverfasser: Castañer, A., Claramunt, M.M., Lefèvre, C., Loisel, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue September 2015
container_start_page 343
container_title Journal of multivariate analysis
container_volume 140
creator Castañer, A.
Claramunt, M.M.
Lefèvre, C.
Loisel, S.
description This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.
doi_str_mv 10.1016/j.jmva.2015.06.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01081756v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X15001463</els_id><sourcerecordid>3766618331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-191e96363e5452d780abf22859f4abea808cc476bfe20979e9393606637210c13</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gAcpePKQOLPJ7mbBS6kfFQoeVPC2bDcTmtAmdTct-O9NTOnRwzLs8D7DzMPYNUKMgPK-iqvN3sYcUMQgY4DkhI0QtIgUT5NTNgJIVcSF_jpnFyFUAIhCpSN281gG56mlybtb7Xzkmjq0tm4nmyandbhkZ4VdB7o61DH7fH76mM2jxdvL62y6iFyaZm2EGknLRCYkUsFzlYFdFpxnQhepXZLNIHMuVXJZEAetNOlEJxKkTBRHcJiM2d0wd2XXZuvLjfU_prGlmU8Xpu8BQoZKyH2fxSHrws4ZT468s-1f-vjpHwfFDZeKC94xtwOz9c33jkJrqmbn6-4kgwpAKQSRdSl-mOybEDwVx1UQTO_ZVKb3bHrPBqTpPHfQwwB1umhfkjfBlVQ7ystundbkTfkf_gssBIIo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700771058</pqid></control><display><type>article</type><title>Discrete Schur-constant models</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Recercat</source><creator>Castañer, A. ; Claramunt, M.M. ; Lefèvre, C. ; Loisel, S.</creator><creatorcontrib>Castañer, A. ; Claramunt, M.M. ; Lefèvre, C. ; Loisel, S.</creatorcontrib><description>This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2015.06.003</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Correlation analysis ; Economics and Finance ; Humanities and Social Sciences ; Insurance risk theory ; Mathematical models ; Mathematics ; Mixed multinomial distribution ; Models matemàtics ; Multiple monotonicity ; Probability ; Probability distribution ; Random variables ; Risc (Assegurances) ; Risc (Economia) ; Risk ; Risk (Insurance) ; Schur-constant property ; Studies ; Survival function</subject><ispartof>Journal of multivariate analysis, 2015-09, Vol.140 (September 2015), p.343-362</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Sep 2015</rights><rights>cc-by-nc-nd (c) Elsevier, 2015 info:eu-repo/semantics/embargoedAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es&lt;/a&gt;</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-191e96363e5452d780abf22859f4abea808cc476bfe20979e9393606637210c13</citedby><cites>FETCH-LOGICAL-c448t-191e96363e5452d780abf22859f4abea808cc476bfe20979e9393606637210c13</cites><orcidid>0000-0003-2265-8607 ; 0000-0003-2176-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2015.06.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01081756$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castañer, A.</creatorcontrib><creatorcontrib>Claramunt, M.M.</creatorcontrib><creatorcontrib>Lefèvre, C.</creatorcontrib><creatorcontrib>Loisel, S.</creatorcontrib><title>Discrete Schur-constant models</title><title>Journal of multivariate analysis</title><description>This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.</description><subject>Correlation analysis</subject><subject>Economics and Finance</subject><subject>Humanities and Social Sciences</subject><subject>Insurance risk theory</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mixed multinomial distribution</subject><subject>Models matemàtics</subject><subject>Multiple monotonicity</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Risc (Assegurances)</subject><subject>Risc (Economia)</subject><subject>Risk</subject><subject>Risk (Insurance)</subject><subject>Schur-constant property</subject><subject>Studies</subject><subject>Survival function</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gAcpePKQOLPJ7mbBS6kfFQoeVPC2bDcTmtAmdTct-O9NTOnRwzLs8D7DzMPYNUKMgPK-iqvN3sYcUMQgY4DkhI0QtIgUT5NTNgJIVcSF_jpnFyFUAIhCpSN281gG56mlybtb7Xzkmjq0tm4nmyandbhkZ4VdB7o61DH7fH76mM2jxdvL62y6iFyaZm2EGknLRCYkUsFzlYFdFpxnQhepXZLNIHMuVXJZEAetNOlEJxKkTBRHcJiM2d0wd2XXZuvLjfU_prGlmU8Xpu8BQoZKyH2fxSHrws4ZT468s-1f-vjpHwfFDZeKC94xtwOz9c33jkJrqmbn6-4kgwpAKQSRdSl-mOybEDwVx1UQTO_ZVKb3bHrPBqTpPHfQwwB1umhfkjfBlVQ7ystundbkTfkf_gssBIIo</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Castañer, A.</creator><creator>Claramunt, M.M.</creator><creator>Lefèvre, C.</creator><creator>Loisel, S.</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>XX2</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2265-8607</orcidid><orcidid>https://orcid.org/0000-0003-2176-8775</orcidid></search><sort><creationdate>20150901</creationdate><title>Discrete Schur-constant models</title><author>Castañer, A. ; Claramunt, M.M. ; Lefèvre, C. ; Loisel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-191e96363e5452d780abf22859f4abea808cc476bfe20979e9393606637210c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Correlation analysis</topic><topic>Economics and Finance</topic><topic>Humanities and Social Sciences</topic><topic>Insurance risk theory</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mixed multinomial distribution</topic><topic>Models matemàtics</topic><topic>Multiple monotonicity</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Risc (Assegurances)</topic><topic>Risc (Economia)</topic><topic>Risk</topic><topic>Risk (Insurance)</topic><topic>Schur-constant property</topic><topic>Studies</topic><topic>Survival function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castañer, A.</creatorcontrib><creatorcontrib>Claramunt, M.M.</creatorcontrib><creatorcontrib>Lefèvre, C.</creatorcontrib><creatorcontrib>Loisel, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castañer, A.</au><au>Claramunt, M.M.</au><au>Lefèvre, C.</au><au>Loisel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Schur-constant models</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>140</volume><issue>September 2015</issue><spage>343</spage><epage>362</epage><pages>343-362</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2015.06.003</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2265-8607</orcidid><orcidid>https://orcid.org/0000-0003-2176-8775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2015-09, Vol.140 (September 2015), p.343-362
issn 0047-259X
1095-7243
language eng
recordid cdi_hal_primary_oai_HAL_hal_01081756v1
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Recercat
subjects Correlation analysis
Economics and Finance
Humanities and Social Sciences
Insurance risk theory
Mathematical models
Mathematics
Mixed multinomial distribution
Models matemàtics
Multiple monotonicity
Probability
Probability distribution
Random variables
Risc (Assegurances)
Risc (Economia)
Risk
Risk (Insurance)
Schur-constant property
Studies
Survival function
title Discrete Schur-constant models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Schur-constant%20models&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Casta%C3%B1er,%20A.&rft.date=2015-09-01&rft.volume=140&rft.issue=September%202015&rft.spage=343&rft.epage=362&rft.pages=343-362&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2015.06.003&rft_dat=%3Cproquest_hal_p%3E3766618331%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700771058&rft_id=info:pmid/&rft_els_id=S0047259X15001463&rfr_iscdi=true