Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries

Micrometrie TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were eva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2015-01, Vol.274, p.496-505
Hauptverfasser: Wilhelm, H.A., Marino, C., Darwiche, A., Soudan, P., Morcrette, M., Monconduit, L., Lestriez, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue
container_start_page 496
container_title Journal of power sources
container_volume 274
creator Wilhelm, H.A.
Marino, C.
Darwiche, A.
Soudan, P.
Morcrette, M.
Monconduit, L.
Lestriez, B.
description Micrometrie TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li sub(1)Ni sub(1/3)Co sub( 1/3)Mn sub(1/3)O sub(2) at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm super(-2).
doi_str_mv 10.1016/j.jpowsour.2014.10.051
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01080364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677948047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e85cfdb2df9eaff28c39912cc651e4910df8989730003885150c272be59dd4b43</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QfKoD61J0zTp4xjTCQUfNp9Dmt7OlK6pSTvx39sy9enC4TuHy4fQPSUxJTR7auKmd1_BjT5OCE2nMCacXqAFlYJFieD8Ei0IEzISgrNrdBNCQwihVJAF2m26g-0AvO0OOAxj9Y1dh_d21-3KqNQBKmzcsXfBDoA7OOjBngBDC2bwrgJcO48LG9mpVOphmHYg3KKrWrcB7n7vEr0_b_brbVS8vbyuV0VkWMaGCCQ3dVUmVZ2DrutEGpbnNDEm4xTSnJKqlrnMBZueZVJyyolJRFICz6sqLVO2RI_n3Q_dqt7bo_bfymmrtqtCzRmhRBKWpSc6sQ9ntvfuc4QwqKMNBtpWd-DGoGgmRJ5KkooJzc6o8S4ED_X_NiVqNq4a9WdczcbnfDLOfgDEpncr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677948047</pqid></control><display><type>article</type><title>Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Wilhelm, H.A. ; Marino, C. ; Darwiche, A. ; Soudan, P. ; Morcrette, M. ; Monconduit, L. ; Lestriez, B.</creator><creatorcontrib>Wilhelm, H.A. ; Marino, C. ; Darwiche, A. ; Soudan, P. ; Morcrette, M. ; Monconduit, L. ; Lestriez, B.</creatorcontrib><description>Micrometrie TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li sub(1)Ni sub(1/3)Co sub( 1/3)Mn sub(1/3)O sub(2) at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm super(-2).</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.10.051</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Accumulators ; Binders ; Carbon black ; Chemical Sciences ; Collectors ; Electrode materials ; Electrodes ; Electrolytes ; Electrolytic cells ; Lithium-ion batteries ; Material chemistry</subject><ispartof>Journal of power sources, 2015-01, Vol.274, p.496-505</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e85cfdb2df9eaff28c39912cc651e4910df8989730003885150c272be59dd4b43</citedby><cites>FETCH-LOGICAL-c363t-e85cfdb2df9eaff28c39912cc651e4910df8989730003885150c272be59dd4b43</cites><orcidid>0000-0002-6579-5516 ; 0000-0003-3698-856X ; 0000-0003-2215-4847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01080364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilhelm, H.A.</creatorcontrib><creatorcontrib>Marino, C.</creatorcontrib><creatorcontrib>Darwiche, A.</creatorcontrib><creatorcontrib>Soudan, P.</creatorcontrib><creatorcontrib>Morcrette, M.</creatorcontrib><creatorcontrib>Monconduit, L.</creatorcontrib><creatorcontrib>Lestriez, B.</creatorcontrib><title>Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries</title><title>Journal of power sources</title><description>Micrometrie TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li sub(1)Ni sub(1/3)Co sub( 1/3)Mn sub(1/3)O sub(2) at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm super(-2).</description><subject>Accumulators</subject><subject>Binders</subject><subject>Carbon black</subject><subject>Chemical Sciences</subject><subject>Collectors</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Lithium-ion batteries</subject><subject>Material chemistry</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKd_QfKoD61J0zTp4xjTCQUfNp9Dmt7OlK6pSTvx39sy9enC4TuHy4fQPSUxJTR7auKmd1_BjT5OCE2nMCacXqAFlYJFieD8Ei0IEzISgrNrdBNCQwihVJAF2m26g-0AvO0OOAxj9Y1dh_d21-3KqNQBKmzcsXfBDoA7OOjBngBDC2bwrgJcO48LG9mpVOphmHYg3KKrWrcB7n7vEr0_b_brbVS8vbyuV0VkWMaGCCQ3dVUmVZ2DrutEGpbnNDEm4xTSnJKqlrnMBZueZVJyyolJRFICz6sqLVO2RI_n3Q_dqt7bo_bfymmrtqtCzRmhRBKWpSc6sQ9ntvfuc4QwqKMNBtpWd-DGoGgmRJ5KkooJzc6o8S4ED_X_NiVqNq4a9WdczcbnfDLOfgDEpncr</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Wilhelm, H.A.</creator><creator>Marino, C.</creator><creator>Darwiche, A.</creator><creator>Soudan, P.</creator><creator>Morcrette, M.</creator><creator>Monconduit, L.</creator><creator>Lestriez, B.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6579-5516</orcidid><orcidid>https://orcid.org/0000-0003-3698-856X</orcidid><orcidid>https://orcid.org/0000-0003-2215-4847</orcidid></search><sort><creationdate>20150115</creationdate><title>Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries</title><author>Wilhelm, H.A. ; Marino, C. ; Darwiche, A. ; Soudan, P. ; Morcrette, M. ; Monconduit, L. ; Lestriez, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e85cfdb2df9eaff28c39912cc651e4910df8989730003885150c272be59dd4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulators</topic><topic>Binders</topic><topic>Carbon black</topic><topic>Chemical Sciences</topic><topic>Collectors</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Lithium-ion batteries</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilhelm, H.A.</creatorcontrib><creatorcontrib>Marino, C.</creatorcontrib><creatorcontrib>Darwiche, A.</creatorcontrib><creatorcontrib>Soudan, P.</creatorcontrib><creatorcontrib>Morcrette, M.</creatorcontrib><creatorcontrib>Monconduit, L.</creatorcontrib><creatorcontrib>Lestriez, B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilhelm, H.A.</au><au>Marino, C.</au><au>Darwiche, A.</au><au>Soudan, P.</au><au>Morcrette, M.</au><au>Monconduit, L.</au><au>Lestriez, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2015-01-15</date><risdate>2015</risdate><volume>274</volume><spage>496</spage><epage>505</epage><pages>496-505</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Micrometrie TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li sub(1)Ni sub(1/3)Co sub( 1/3)Mn sub(1/3)O sub(2) at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm super(-2).</abstract><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.10.051</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6579-5516</orcidid><orcidid>https://orcid.org/0000-0003-3698-856X</orcidid><orcidid>https://orcid.org/0000-0003-2215-4847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2015-01, Vol.274, p.496-505
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_01080364v1
source Elsevier ScienceDirect Journals
subjects Accumulators
Binders
Carbon black
Chemical Sciences
Collectors
Electrode materials
Electrodes
Electrolytes
Electrolytic cells
Lithium-ion batteries
Material chemistry
title Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20study%20on%20TiSnSb-based%20composite%20negative%20electrode%20for%20Li-ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Wilhelm,%20H.A.&rft.date=2015-01-15&rft.volume=274&rft.spage=496&rft.epage=505&rft.pages=496-505&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2014.10.051&rft_dat=%3Cproquest_hal_p%3E1677948047%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677948047&rft_id=info:pmid/&rfr_iscdi=true