Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface

A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2014-06, Vol.118 (24), p.12952-12961
Hauptverfasser: Osei-Agyemang, Eric, Paul, Jean Francois, Lucas, Romain, Foucaud, Sylvie, Cristol, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12961
container_issue 24
container_start_page 12952
container_title Journal of physical chemistry. C
container_volume 118
creator Osei-Agyemang, Eric
Paul, Jean Francois
Lucas, Romain
Foucaud, Sylvie
Cristol, Sylvain
description A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at >10–8 bar. These findings compare well with experimental photoemission studies published in the literature.
doi_str_mv 10.1021/jp503208n
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01078740v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c534589154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a641-f630b8d5df5a27613758debf7acbd0dbfa14a7074ebfc4902fcf48cd373b9b3c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKBP_AFiUoE1rFTp8dSKEEqCoKcuFiOH62rNKmctCK_wFeTUNTDandmZ0erQeiawD2BkDystxHQEOLyBA3IhIYBZ1F0epwZP0cXdb0GiCgQOkA_78a7SjuFn-YZlqXG06bauLrpmGxl_KbSbSk3HXqrtClcucSVxR9GqsbtXdP2KAnvcNpVf52EaacsjNoVpsZViR-lN3-b9LtdmrK3cdYZjb_8DN8SgBH-3HkrlblEZ1YWtbn670OUzZ-zWRIs0pfX2XQRyDEjgR1TyGMdaRvJkI8J5VGsTW65VLkGnVtJmOTAWccpNoHQKstipSmn-SSnig7R6GC7koXYereRvhWVdCKZLkTPAQEecwZ70mlvDlqparGudr7sHhMERJ-1OGZNfwGzvW-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><source>ACS Publications</source><creator>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</creator><creatorcontrib>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</creatorcontrib><description>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at &gt;10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp503208n</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Journal of physical chemistry. C, 2014-06, Vol.118 (24), p.12952-12961</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1935-1428 ; 0000-0002-4534-9236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp503208n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp503208n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-01078740$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Osei-Agyemang, Eric</creatorcontrib><creatorcontrib>Paul, Jean Francois</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Cristol, Sylvain</creatorcontrib><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at &gt;10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</description><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKBP_AFiUoE1rFTp8dSKEEqCoKcuFiOH62rNKmctCK_wFeTUNTDandmZ0erQeiawD2BkDystxHQEOLyBA3IhIYBZ1F0epwZP0cXdb0GiCgQOkA_78a7SjuFn-YZlqXG06bauLrpmGxl_KbSbSk3HXqrtClcucSVxR9GqsbtXdP2KAnvcNpVf52EaacsjNoVpsZViR-lN3-b9LtdmrK3cdYZjb_8DN8SgBH-3HkrlblEZ1YWtbn670OUzZ-zWRIs0pfX2XQRyDEjgR1TyGMdaRvJkI8J5VGsTW65VLkGnVtJmOTAWccpNoHQKstipSmn-SSnig7R6GC7koXYereRvhWVdCKZLkTPAQEecwZ70mlvDlqparGudr7sHhMERJ-1OGZNfwGzvW-k</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Osei-Agyemang, Eric</creator><creator>Paul, Jean Francois</creator><creator>Lucas, Romain</creator><creator>Foucaud, Sylvie</creator><creator>Cristol, Sylvain</creator><general>American Chemical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid></search><sort><creationdate>20140619</creationdate><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><author>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a641-f630b8d5df5a27613758debf7acbd0dbfa14a7074ebfc4902fcf48cd373b9b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osei-Agyemang, Eric</creatorcontrib><creatorcontrib>Paul, Jean Francois</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Cristol, Sylvain</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osei-Agyemang, Eric</au><au>Paul, Jean Francois</au><au>Lucas, Romain</au><au>Foucaud, Sylvie</au><au>Cristol, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-06-19</date><risdate>2014</risdate><volume>118</volume><issue>24</issue><spage>12952</spage><epage>12961</epage><pages>12952-12961</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at &gt;10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp503208n</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-06, Vol.118 (24), p.12952-12961
issn 1932-7447
1932-7455
language eng
recordid cdi_hal_primary_oai_HAL_hal_01078740v1
source ACS Publications
subjects Chemical Sciences
or physical chemistry
Theoretical and
title Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20DFT%20and%20Atomistic%20Thermodynamic%20Modeling%20of%20Reactivity%20of%20H2,%20O2,%20and%20H2O%20Molecules%20on%20Bare%20and%20Oxygen%20Modified%20ZrC%20(100)%20Surface&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Osei-Agyemang,%20Eric&rft.date=2014-06-19&rft.volume=118&rft.issue=24&rft.spage=12952&rft.epage=12961&rft.pages=12952-12961&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp503208n&rft_dat=%3Cacs_hal_p%3Ec534589154%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true