Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface
A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2014-06, Vol.118 (24), p.12952-12961 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12961 |
---|---|
container_issue | 24 |
container_start_page | 12952 |
container_title | Journal of physical chemistry. C |
container_volume | 118 |
creator | Osei-Agyemang, Eric Paul, Jean Francois Lucas, Romain Foucaud, Sylvie Cristol, Sylvain |
description | A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at >10–8 bar. These findings compare well with experimental photoemission studies published in the literature. |
doi_str_mv | 10.1021/jp503208n |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01078740v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c534589154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a641-f630b8d5df5a27613758debf7acbd0dbfa14a7074ebfc4902fcf48cd373b9b3c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKBP_AFiUoE1rFTp8dSKEEqCoKcuFiOH62rNKmctCK_wFeTUNTDandmZ0erQeiawD2BkDystxHQEOLyBA3IhIYBZ1F0epwZP0cXdb0GiCgQOkA_78a7SjuFn-YZlqXG06bauLrpmGxl_KbSbSk3HXqrtClcucSVxR9GqsbtXdP2KAnvcNpVf52EaacsjNoVpsZViR-lN3-b9LtdmrK3cdYZjb_8DN8SgBH-3HkrlblEZ1YWtbn670OUzZ-zWRIs0pfX2XQRyDEjgR1TyGMdaRvJkI8J5VGsTW65VLkGnVtJmOTAWccpNoHQKstipSmn-SSnig7R6GC7koXYereRvhWVdCKZLkTPAQEecwZ70mlvDlqparGudr7sHhMERJ-1OGZNfwGzvW-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><source>ACS Publications</source><creator>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</creator><creatorcontrib>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</creatorcontrib><description>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at >10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp503208n</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Journal of physical chemistry. C, 2014-06, Vol.118 (24), p.12952-12961</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1935-1428 ; 0000-0002-4534-9236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp503208n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp503208n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-01078740$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Osei-Agyemang, Eric</creatorcontrib><creatorcontrib>Paul, Jean Francois</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Cristol, Sylvain</creatorcontrib><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at >10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</description><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKBP_AFiUoE1rFTp8dSKEEqCoKcuFiOH62rNKmctCK_wFeTUNTDandmZ0erQeiawD2BkDystxHQEOLyBA3IhIYBZ1F0epwZP0cXdb0GiCgQOkA_78a7SjuFn-YZlqXG06bauLrpmGxl_KbSbSk3HXqrtClcucSVxR9GqsbtXdP2KAnvcNpVf52EaacsjNoVpsZViR-lN3-b9LtdmrK3cdYZjb_8DN8SgBH-3HkrlblEZ1YWtbn670OUzZ-zWRIs0pfX2XQRyDEjgR1TyGMdaRvJkI8J5VGsTW65VLkGnVtJmOTAWccpNoHQKstipSmn-SSnig7R6GC7koXYereRvhWVdCKZLkTPAQEecwZ70mlvDlqparGudr7sHhMERJ-1OGZNfwGzvW-k</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Osei-Agyemang, Eric</creator><creator>Paul, Jean Francois</creator><creator>Lucas, Romain</creator><creator>Foucaud, Sylvie</creator><creator>Cristol, Sylvain</creator><general>American Chemical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid></search><sort><creationdate>20140619</creationdate><title>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</title><author>Osei-Agyemang, Eric ; Paul, Jean Francois ; Lucas, Romain ; Foucaud, Sylvie ; Cristol, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a641-f630b8d5df5a27613758debf7acbd0dbfa14a7074ebfc4902fcf48cd373b9b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osei-Agyemang, Eric</creatorcontrib><creatorcontrib>Paul, Jean Francois</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Cristol, Sylvain</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osei-Agyemang, Eric</au><au>Paul, Jean Francois</au><au>Lucas, Romain</au><au>Foucaud, Sylvie</au><au>Cristol, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-06-19</date><risdate>2014</risdate><volume>118</volume><issue>24</issue><spage>12952</spage><epage>12961</epage><pages>12952-12961</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A comprehensive study was carried out using DFT calculation, together with statistical thermodynamics study of oxygen, hydrogen, and water sorption on the bare and ZrO-modified ZrC (100) surface. The bare ZrC (100) surface is found to be fully covered by oxygen whatever the temperature and pressure whereas it is free of hydrogen. Water adsorbs on the bare surface at temperatures below 200 K and dissociates into surface hydroxyl groups, but all water induced features are lost at room temperature. Oxygen modification further activates the (100) surface, and water adsorbs strongly as either atomic O with H2 release or into surface OH and H groups. Thermodynamic stability plots at 300 K for different water coverage predict coverage of 0.75 ML at >10–8 bar. These findings compare well with experimental photoemission studies published in the literature.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp503208n</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2014-06, Vol.118 (24), p.12952-12961 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01078740v1 |
source | ACS Publications |
subjects | Chemical Sciences or physical chemistry Theoretical and |
title | Periodic DFT and Atomistic Thermodynamic Modeling of Reactivity of H2, O2, and H2O Molecules on Bare and Oxygen Modified ZrC (100) Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20DFT%20and%20Atomistic%20Thermodynamic%20Modeling%20of%20Reactivity%20of%20H2,%20O2,%20and%20H2O%20Molecules%20on%20Bare%20and%20Oxygen%20Modified%20ZrC%20(100)%20Surface&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Osei-Agyemang,%20Eric&rft.date=2014-06-19&rft.volume=118&rft.issue=24&rft.spage=12952&rft.epage=12961&rft.pages=12952-12961&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp503208n&rft_dat=%3Cacs_hal_p%3Ec534589154%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |