Simulation of SPDEs for Excitable Media Using Finite Elements
In this paper, we address the question of the discretization of stochastic partial differential equations (SPDEs) for excitable media. Working with SPDEs driven by colored noise, we consider a numerical scheme based on finite differences in time (Euler–Maruyama) and finite elements in space. Motivat...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2015-10, Vol.65 (1), p.171-195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we address the question of the discretization of stochastic partial differential equations (SPDEs) for excitable media. Working with SPDEs driven by colored noise, we consider a numerical scheme based on finite differences in time (Euler–Maruyama) and finite elements in space. Motivated by biological considerations, we study numerically the emergence of reentrant patterns in excitable systems such as the Barkley or Mitchell–Schaeffer models. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-014-9960-8 |