Partition function of free conformal higher spin theory
A bstract We compute the canonical partition function Z of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin s CFT’s in ℝ d . We discuss in detail the 4-dimensional case (where s = 1 is the standard Maxwell vector, s = 2 is the Weyl graviton, etc.), but also pres...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-08, Vol.2014 (8), p.1, Article 113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2014 |
creator | Beccaria, Matteo Bekaert, Xavier Tseytlin, Arkady A. |
description | A
bstract
We compute the canonical partition function
Z
of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin
s
CFT’s in
ℝ
d
. We discuss in detail the 4-dimensional case (where
s
= 1 is the standard Maxwell vector,
s
= 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions
d
.
Z
may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra
so
(
d,
2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS
d
+1
. The same partition function
Z
may also be computed from the CHS path integral on a curved
S
1
×
S
d
−1
background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions
Z
s
over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly
a
-coefficient. This happens to be true in all even dimensions
d
≥ 2. |
doi_str_mv | 10.1007/JHEP08(2014)113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01077642v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791658151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7858490d50ed99ddd3299382560f63392ee888750f60cce13b213f08cec09c9c3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws0ZioUPonZ3E9lhVhYIq0QFmKzh2k6qNi50i9d_jEoS6MN270_eeTo-QW4QHBODjl_lsCeKeAmYjRHZGBghUpiLj8vxEX5KrENYAmKOEAeHL0ndN17g2sftW_whnE-uNSbRrrfPbcpPUzao2Pgm7pk262jh_uCYXttwEc_M7h-T9cfY2naeL16fn6WSR6izHLuUiF5mEKgdTSVlVFaNSMkHzAmzBmKTGCCF4HjfQ2iD7oMgsCG00SC01G5JRn1uXG7Xzzbb0B-XKRs0nC3W8AQLnRUa_MLJ3Pbvz7nNvQqfWbu_b-J5CDgKwwIJHatxT2rsQvLF_sQjq2KTqm1THJlVsMjqgd4RItivjT3L_sXwD0Ihy3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708016167</pqid></control><display><type>article</type><title>Partition function of free conformal higher spin theory</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Beccaria, Matteo ; Bekaert, Xavier ; Tseytlin, Arkady A.</creator><creatorcontrib>Beccaria, Matteo ; Bekaert, Xavier ; Tseytlin, Arkady A.</creatorcontrib><description>A
bstract
We compute the canonical partition function
Z
of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin
s
CFT’s in
ℝ
d
. We discuss in detail the 4-dimensional case (where
s
= 1 is the standard Maxwell vector,
s
= 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions
d
.
Z
may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra
so
(
d,
2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS
d
+1
. The same partition function
Z
may also be computed from the CHS path integral on a curved
S
1
×
S
d
−1
background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions
Z
s
over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly
a
-coefficient. This happens to be true in all even dimensions
d
≥ 2.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2014)113</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; High Energy Physics - Theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-08, Vol.2014 (8), p.1, Article 113</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7858490d50ed99ddd3299382560f63392ee888750f60cce13b213f08cec09c9c3</citedby><cites>FETCH-LOGICAL-c451t-7858490d50ed99ddd3299382560f63392ee888750f60cce13b213f08cec09c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP08(2014)113$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP08(2014)113$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41098,42167,51553</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01077642$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beccaria, Matteo</creatorcontrib><creatorcontrib>Bekaert, Xavier</creatorcontrib><creatorcontrib>Tseytlin, Arkady A.</creatorcontrib><title>Partition function of free conformal higher spin theory</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We compute the canonical partition function
Z
of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin
s
CFT’s in
ℝ
d
. We discuss in detail the 4-dimensional case (where
s
= 1 is the standard Maxwell vector,
s
= 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions
d
.
Z
may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra
so
(
d,
2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS
d
+1
. The same partition function
Z
may also be computed from the CHS path integral on a curved
S
1
×
S
d
−1
background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions
Z
s
over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly
a
-coefficient. This happens to be true in all even dimensions
d
≥ 2.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws0ZioUPonZ3E9lhVhYIq0QFmKzh2k6qNi50i9d_jEoS6MN270_eeTo-QW4QHBODjl_lsCeKeAmYjRHZGBghUpiLj8vxEX5KrENYAmKOEAeHL0ndN17g2sftW_whnE-uNSbRrrfPbcpPUzao2Pgm7pk262jh_uCYXttwEc_M7h-T9cfY2naeL16fn6WSR6izHLuUiF5mEKgdTSVlVFaNSMkHzAmzBmKTGCCF4HjfQ2iD7oMgsCG00SC01G5JRn1uXG7Xzzbb0B-XKRs0nC3W8AQLnRUa_MLJ3Pbvz7nNvQqfWbu_b-J5CDgKwwIJHatxT2rsQvLF_sQjq2KTqm1THJlVsMjqgd4RItivjT3L_sXwD0Ihy3Q</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Beccaria, Matteo</creator><creator>Bekaert, Xavier</creator><creator>Tseytlin, Arkady A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20140801</creationdate><title>Partition function of free conformal higher spin theory</title><author>Beccaria, Matteo ; Bekaert, Xavier ; Tseytlin, Arkady A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7858490d50ed99ddd3299382560f63392ee888750f60cce13b213f08cec09c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beccaria, Matteo</creatorcontrib><creatorcontrib>Bekaert, Xavier</creatorcontrib><creatorcontrib>Tseytlin, Arkady A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beccaria, Matteo</au><au>Bekaert, Xavier</au><au>Tseytlin, Arkady A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition function of free conformal higher spin theory</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>2014</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>113</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We compute the canonical partition function
Z
of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin
s
CFT’s in
ℝ
d
. We discuss in detail the 4-dimensional case (where
s
= 1 is the standard Maxwell vector,
s
= 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions
d
.
Z
may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra
so
(
d,
2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdS
d
+1
. The same partition function
Z
may also be computed from the CHS path integral on a curved
S
1
×
S
d
−1
background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions
Z
s
over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly
a
-coefficient. This happens to be true in all even dimensions
d
≥ 2.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2014)113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2014-08, Vol.2014 (8), p.1, Article 113 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01077642v1 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Classical and Quantum Gravitation Elementary Particles High energy physics High Energy Physics - Theory Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | Partition function of free conformal higher spin theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition%20function%20of%20free%20conformal%20higher%20spin%20theory&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Beccaria,%20Matteo&rft.date=2014-08-01&rft.volume=2014&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=113&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2014)113&rft_dat=%3Cproquest_hal_p%3E3791658151%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708016167&rft_id=info:pmid/&rfr_iscdi=true |