Monotone Operator Methods for Nash Equilibria in Non-potential Games

We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Combettes, Patrick, Briceño-Arias, Luis
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 143
container_title
container_volume 50
creator Combettes, Patrick
Briceño-Arias, Luis
description We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.
doi_str_mv 10.1007/978-1-4614-7621-4_9
format Book Chapter
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01077018v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>CX6653100017</galeid><sourcerecordid>CX6653100017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-976068ca83046fdace46e11d1a7144e9a81b24d77e9ea6f5f924dff9e626f5c33</originalsourceid><addsrcrecordid>eNo9kE1P3EAMhocWKrZ0_wBccuWQ1k5m5-OIKB-VFri0Z8ubddiUkAkzAan_vhMt7cl-7fex5FepM4SvCGC_eetKLLVBXVpT5Y78gfqM82DW5oNaVOh1iYD2o1pm-78d2MP_O_Cf1MIZBAfO-2O1TOk3AGQItHML9f0uDGEKgxQPo0SeQizuZNqFbSra3N9z2hVXL69d321ix0U3FPdhKMcwyTB13Bc3_CzpizpquU-yfK8n6tf11c_L23L9cPPj8mJdNrXzU-mtAeMadjVo0265EW0EcYtsUWvx7HBT6a214oVNu2p9Vm3rxVRZNXV9os73d3fc0xi7Z45_KHBHtxdrmmf5K2sB3RtmL-69KRuHR4m0CeEpEQLN8VLOi5DmxGiOk3K8man3zBjDy6ukiWSGmvxr5L7Z8ThJzCe0MRYcuYpw5TJ1uqceuRd6iz0Zs6pxTtnWfwH3VH7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1466708_82_158</pqid></control><display><type>book_chapter</type><title>Monotone Operator Methods for Nash Equilibria in Non-potential Games</title><source>Springer Books</source><creator>Combettes, Patrick ; Briceño-Arias, Luis</creator><contributor>Vanderwerff, Jon D ; Garvan, Frank ; Bailey, David H ; Borwein, Peter ; Wolkowicz, Henry ; Théra, Michel ; Bauschke, Heinz H ; Bauschke, Heinz H. ; Wolkowicz, Henry ; Bailey, David H. ; Théra, Michel ; Vanderwerff, Jon D. ; Garvan, Frank ; Borwein, Peter</contributor><creatorcontrib>Combettes, Patrick ; Briceño-Arias, Luis ; Vanderwerff, Jon D ; Garvan, Frank ; Bailey, David H ; Borwein, Peter ; Wolkowicz, Henry ; Théra, Michel ; Bauschke, Heinz H ; Bauschke, Heinz H. ; Wolkowicz, Henry ; Bailey, David H. ; Théra, Michel ; Vanderwerff, Jon D. ; Garvan, Frank ; Borwein, Peter</creatorcontrib><description>We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.</description><identifier>ISSN: 2194-1009</identifier><identifier>ISBN: 9781461476207</identifier><identifier>ISBN: 1461476208</identifier><identifier>EISSN: 2194-1017</identifier><identifier>EISBN: 1461476216</identifier><identifier>EISBN: 9781461476214</identifier><identifier>DOI: 10.1007/978-1-4614-7621-4_9</identifier><identifier>OCLC: 861080899</identifier><identifier>LCCallNum: QA241-247.5</identifier><language>eng</language><publisher>United States: Springer New York</publisher><subject>47H05 ; 49M27 ; Algorithms ; Functional analysis &amp; transforms ; Mathematics ; Monotone operator ; Nash equilibrium ; Number theory ; Operational research ; Optimization and Control ; Potential game ; Primary 91A05 ; Proximal algorithm ; Secondary 90C25 ; Splitting method ; Zero-sum game</subject><ispartof>Computational and Analytical Mathematics, 2013, Vol.50, p.143-159</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-976068ca83046fdace46e11d1a7144e9a81b24d77e9ea6f5f924dff9e626f5c33</citedby><relation>Springer Proceedings in Mathematics &amp; Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1466708-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-1-4614-7621-4_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4614-7621-4_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>127,146,230,779,780,784,793,885,25353,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01077018$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vanderwerff, Jon D</contributor><contributor>Garvan, Frank</contributor><contributor>Bailey, David H</contributor><contributor>Borwein, Peter</contributor><contributor>Wolkowicz, Henry</contributor><contributor>Théra, Michel</contributor><contributor>Bauschke, Heinz H</contributor><contributor>Bauschke, Heinz H.</contributor><contributor>Wolkowicz, Henry</contributor><contributor>Bailey, David H.</contributor><contributor>Théra, Michel</contributor><contributor>Vanderwerff, Jon D.</contributor><contributor>Garvan, Frank</contributor><contributor>Borwein, Peter</contributor><creatorcontrib>Combettes, Patrick</creatorcontrib><creatorcontrib>Briceño-Arias, Luis</creatorcontrib><title>Monotone Operator Methods for Nash Equilibria in Non-potential Games</title><title>Computational and Analytical Mathematics</title><description>We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.</description><subject>47H05</subject><subject>49M27</subject><subject>Algorithms</subject><subject>Functional analysis &amp; transforms</subject><subject>Mathematics</subject><subject>Monotone operator</subject><subject>Nash equilibrium</subject><subject>Number theory</subject><subject>Operational research</subject><subject>Optimization and Control</subject><subject>Potential game</subject><subject>Primary 91A05</subject><subject>Proximal algorithm</subject><subject>Secondary 90C25</subject><subject>Splitting method</subject><subject>Zero-sum game</subject><issn>2194-1009</issn><issn>2194-1017</issn><isbn>9781461476207</isbn><isbn>1461476208</isbn><isbn>1461476216</isbn><isbn>9781461476214</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE1P3EAMhocWKrZ0_wBccuWQ1k5m5-OIKB-VFri0Z8ubddiUkAkzAan_vhMt7cl-7fex5FepM4SvCGC_eetKLLVBXVpT5Y78gfqM82DW5oNaVOh1iYD2o1pm-78d2MP_O_Cf1MIZBAfO-2O1TOk3AGQItHML9f0uDGEKgxQPo0SeQizuZNqFbSra3N9z2hVXL69d321ix0U3FPdhKMcwyTB13Bc3_CzpizpquU-yfK8n6tf11c_L23L9cPPj8mJdNrXzU-mtAeMadjVo0265EW0EcYtsUWvx7HBT6a214oVNu2p9Vm3rxVRZNXV9os73d3fc0xi7Z45_KHBHtxdrmmf5K2sB3RtmL-69KRuHR4m0CeEpEQLN8VLOi5DmxGiOk3K8man3zBjDy6ukiWSGmvxr5L7Z8ThJzCe0MRYcuYpw5TJ1uqceuRd6iz0Zs6pxTtnWfwH3VH7M</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Combettes, Patrick</creator><creator>Briceño-Arias, Luis</creator><general>Springer New York</general><scope>FFUUA</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2013</creationdate><title>Monotone Operator Methods for Nash Equilibria in Non-potential Games</title><author>Combettes, Patrick ; Briceño-Arias, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-976068ca83046fdace46e11d1a7144e9a81b24d77e9ea6f5f924dff9e626f5c33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>47H05</topic><topic>49M27</topic><topic>Algorithms</topic><topic>Functional analysis &amp; transforms</topic><topic>Mathematics</topic><topic>Monotone operator</topic><topic>Nash equilibrium</topic><topic>Number theory</topic><topic>Operational research</topic><topic>Optimization and Control</topic><topic>Potential game</topic><topic>Primary 91A05</topic><topic>Proximal algorithm</topic><topic>Secondary 90C25</topic><topic>Splitting method</topic><topic>Zero-sum game</topic><toplevel>online_resources</toplevel><creatorcontrib>Combettes, Patrick</creatorcontrib><creatorcontrib>Briceño-Arias, Luis</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Combettes, Patrick</au><au>Briceño-Arias, Luis</au><au>Vanderwerff, Jon D</au><au>Garvan, Frank</au><au>Bailey, David H</au><au>Borwein, Peter</au><au>Wolkowicz, Henry</au><au>Théra, Michel</au><au>Bauschke, Heinz H</au><au>Bauschke, Heinz H.</au><au>Wolkowicz, Henry</au><au>Bailey, David H.</au><au>Théra, Michel</au><au>Vanderwerff, Jon D.</au><au>Garvan, Frank</au><au>Borwein, Peter</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Monotone Operator Methods for Nash Equilibria in Non-potential Games</atitle><btitle>Computational and Analytical Mathematics</btitle><seriestitle>Springer Proceedings in Mathematics &amp; Statistics</seriestitle><date>2013</date><risdate>2013</risdate><volume>50</volume><spage>143</spage><epage>159</epage><pages>143-159</pages><issn>2194-1009</issn><eissn>2194-1017</eissn><isbn>9781461476207</isbn><isbn>1461476208</isbn><eisbn>1461476216</eisbn><eisbn>9781461476214</eisbn><abstract>We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.</abstract><cop>United States</cop><pub>Springer New York</pub><doi>10.1007/978-1-4614-7621-4_9</doi><oclcid>861080899</oclcid><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-1009
ispartof Computational and Analytical Mathematics, 2013, Vol.50, p.143-159
issn 2194-1009
2194-1017
language eng
recordid cdi_hal_primary_oai_HAL_hal_01077018v1
source Springer Books
subjects 47H05
49M27
Algorithms
Functional analysis & transforms
Mathematics
Monotone operator
Nash equilibrium
Number theory
Operational research
Optimization and Control
Potential game
Primary 91A05
Proximal algorithm
Secondary 90C25
Splitting method
Zero-sum game
title Monotone Operator Methods for Nash Equilibria in Non-potential Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Monotone%20Operator%20Methods%20for%20Nash%20Equilibria%20in%20Non-potential%20Games&rft.btitle=Computational%20and%20Analytical%20Mathematics&rft.au=Combettes,%20Patrick&rft.date=2013&rft.volume=50&rft.spage=143&rft.epage=159&rft.pages=143-159&rft.issn=2194-1009&rft.eissn=2194-1017&rft.isbn=9781461476207&rft.isbn_list=1461476208&rft_id=info:doi/10.1007/978-1-4614-7621-4_9&rft_dat=%3Cgale_hal_p%3ECX6653100017%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=1461476216&rft.eisbn_list=9781461476214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1466708_82_158&rft_id=info:pmid/&rft_galeid=CX6653100017&rfr_iscdi=true