Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces

Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2010-10, Vol.79 (2), p.198-210
Hauptverfasser: Socol, Marius, Lefrou, Christine, Bruckert, Franz, Delabouglise, Didier, Weidenhaupt, Marianne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 2
container_start_page 198
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 79
creator Socol, Marius
Lefrou, Christine
Bruckert, Franz
Delabouglise, Didier
Weidenhaupt, Marianne
description Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1 s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim E Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11 s after the electric pulse and the next ones appear regularly, separated by about 10 s. Synchronized actin-polymerization activity continues for 40 s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.
doi_str_mv 10.1016/j.bioelechem.2010.04.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01067531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539410000708</els_id><sourcerecordid>856762253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRS0EYh7wCyg7xCJN-RU7y2F4DFJLLACJDbIcu0K7lcSNnYzUfD3O9DAsZ2OXSqdc1_cSUlHYUKDN2_2mCxEHdDscNwxKG8QGgD8h51QrXcuG_XhaatmoWvJWnJGLnPcAoKmSz8kZA6GYpPSc_Px6nNwuxSn8sXOIUxX76n1w8zHmGYewjJUP2cXgsZTW7zCvkJ18lQ8JrQ_Tr2rJ67nKmVMZK--4qo_JYX5BnvV2yPjy_r4k3z9--HZ9U2-_fPp8fbWtneDtXAvsmNMdAuOUa9li0zXYyl4LD8p3rC1yu160QtC2cwIUKAeSw1q6Hji_JG9O7-7sYA4pjDYdTbTB3FxtzdorFjVKcnpLC_v6xB5S_L1gns1YfojDYCeMSza6mNYwJvmjpBK65ZpzUUh9Il0xICfsH0RQMGtiZm_-J2bWxAwIA3fSX90vWboR_cPgv4gK8O4EYDHwNmAy2QWcHPqQiuPGx_D4lr8eM6xp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748938334</pqid></control><display><type>article</type><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</creator><creatorcontrib>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</creatorcontrib><description>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1 s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim E Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11 s after the electric pulse and the next ones appear regularly, separated by about 10 s. Synchronized actin-polymerization activity continues for 40 s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2010.04.003</identifier><identifier>PMID: 20472511</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Actins - metabolism ; Biotechnology ; Cell adhesion ; Cell Adhesion - physiology ; Cell Movement - physiology ; Chemical Sciences ; Computer Science ; Dictyostelium - cytology ; Dictyostelium - physiology ; Dictyostelium discoideum ; Electrochemistry ; Electrophysiological Phenomena ; Electrostatic forces ; Fluorescence ; Green Fluorescent Proteins - analysis ; Indium Tin Oxide ; Intracellular Membranes - metabolism ; Life Sciences ; Lim EΔcoil fluorescence ; Material chemistry ; Microscopy, Interference ; Reflection Interference Contrast Microscopy ; Static Electricity ; Tin Compounds - chemistry</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2010-10, Vol.79 (2), p.198-210</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</citedby><cites>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</cites><orcidid>0000-0001-5180-6758 ; 0000-0003-1646-5315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567539410000708$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20472511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01067531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Socol, Marius</creatorcontrib><creatorcontrib>Lefrou, Christine</creatorcontrib><creatorcontrib>Bruckert, Franz</creatorcontrib><creatorcontrib>Delabouglise, Didier</creatorcontrib><creatorcontrib>Weidenhaupt, Marianne</creatorcontrib><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1 s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim E Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11 s after the electric pulse and the next ones appear regularly, separated by about 10 s. Synchronized actin-polymerization activity continues for 40 s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</description><subject>Actins - metabolism</subject><subject>Biotechnology</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Movement - physiology</subject><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Dictyostelium - cytology</subject><subject>Dictyostelium - physiology</subject><subject>Dictyostelium discoideum</subject><subject>Electrochemistry</subject><subject>Electrophysiological Phenomena</subject><subject>Electrostatic forces</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Indium Tin Oxide</subject><subject>Intracellular Membranes - metabolism</subject><subject>Life Sciences</subject><subject>Lim EΔcoil fluorescence</subject><subject>Material chemistry</subject><subject>Microscopy, Interference</subject><subject>Reflection Interference Contrast Microscopy</subject><subject>Static Electricity</subject><subject>Tin Compounds - chemistry</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuO1DAQRS0EYh7wCyg7xCJN-RU7y2F4DFJLLACJDbIcu0K7lcSNnYzUfD3O9DAsZ2OXSqdc1_cSUlHYUKDN2_2mCxEHdDscNwxKG8QGgD8h51QrXcuG_XhaatmoWvJWnJGLnPcAoKmSz8kZA6GYpPSc_Px6nNwuxSn8sXOIUxX76n1w8zHmGYewjJUP2cXgsZTW7zCvkJ18lQ8JrQ_Tr2rJ67nKmVMZK--4qo_JYX5BnvV2yPjy_r4k3z9--HZ9U2-_fPp8fbWtneDtXAvsmNMdAuOUa9li0zXYyl4LD8p3rC1yu160QtC2cwIUKAeSw1q6Hji_JG9O7-7sYA4pjDYdTbTB3FxtzdorFjVKcnpLC_v6xB5S_L1gns1YfojDYCeMSza6mNYwJvmjpBK65ZpzUUh9Il0xICfsH0RQMGtiZm_-J2bWxAwIA3fSX90vWboR_cPgv4gK8O4EYDHwNmAy2QWcHPqQiuPGx_D4lr8eM6xp</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Socol, Marius</creator><creator>Lefrou, Christine</creator><creator>Bruckert, Franz</creator><creator>Delabouglise, Didier</creator><creator>Weidenhaupt, Marianne</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5180-6758</orcidid><orcidid>https://orcid.org/0000-0003-1646-5315</orcidid></search><sort><creationdate>20101001</creationdate><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><author>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actins - metabolism</topic><topic>Biotechnology</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Movement - physiology</topic><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Dictyostelium - cytology</topic><topic>Dictyostelium - physiology</topic><topic>Dictyostelium discoideum</topic><topic>Electrochemistry</topic><topic>Electrophysiological Phenomena</topic><topic>Electrostatic forces</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Indium Tin Oxide</topic><topic>Intracellular Membranes - metabolism</topic><topic>Life Sciences</topic><topic>Lim EΔcoil fluorescence</topic><topic>Material chemistry</topic><topic>Microscopy, Interference</topic><topic>Reflection Interference Contrast Microscopy</topic><topic>Static Electricity</topic><topic>Tin Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Socol, Marius</creatorcontrib><creatorcontrib>Lefrou, Christine</creatorcontrib><creatorcontrib>Bruckert, Franz</creatorcontrib><creatorcontrib>Delabouglise, Didier</creatorcontrib><creatorcontrib>Weidenhaupt, Marianne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Socol, Marius</au><au>Lefrou, Christine</au><au>Bruckert, Franz</au><au>Delabouglise, Didier</au><au>Weidenhaupt, Marianne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>79</volume><issue>2</issue><spage>198</spage><epage>210</epage><pages>198-210</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1 s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim E Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11 s after the electric pulse and the next ones appear regularly, separated by about 10 s. Synchronized actin-polymerization activity continues for 40 s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20472511</pmid><doi>10.1016/j.bioelechem.2010.04.003</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5180-6758</orcidid><orcidid>https://orcid.org/0000-0003-1646-5315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2010-10, Vol.79 (2), p.198-210
issn 1567-5394
1878-562X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01067531v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Actins - metabolism
Biotechnology
Cell adhesion
Cell Adhesion - physiology
Cell Movement - physiology
Chemical Sciences
Computer Science
Dictyostelium - cytology
Dictyostelium - physiology
Dictyostelium discoideum
Electrochemistry
Electrophysiological Phenomena
Electrostatic forces
Fluorescence
Green Fluorescent Proteins - analysis
Indium Tin Oxide
Intracellular Membranes - metabolism
Life Sciences
Lim EΔcoil fluorescence
Material chemistry
Microscopy, Interference
Reflection Interference Contrast Microscopy
Static Electricity
Tin Compounds - chemistry
title Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Dictyostelium%20discoideum%20adhesion%20and%20spreading%20using%20electrostatic%20forces&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Socol,%20Marius&rft.date=2010-10-01&rft.volume=79&rft.issue=2&rft.spage=198&rft.epage=210&rft.pages=198-210&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2010.04.003&rft_dat=%3Cproquest_hal_p%3E856762253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748938334&rft_id=info:pmid/20472511&rft_els_id=S1567539410000708&rfr_iscdi=true