Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces
Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2010-10, Vol.79 (2), p.198-210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 2 |
container_start_page | 198 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 79 |
creator | Socol, Marius Lefrou, Christine Bruckert, Franz Delabouglise, Didier Weidenhaupt, Marianne |
description | Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17
mM)
Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5
s. Secondly applying a high potential pulse (2.5
V/Ref, 0.1
s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim
E
Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11
s after the electric pulse and the next ones appear regularly, separated by about 10
s. Synchronized actin-polymerization activity continues for 40
s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact. |
doi_str_mv | 10.1016/j.bioelechem.2010.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01067531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539410000708</els_id><sourcerecordid>856762253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRS0EYh7wCyg7xCJN-RU7y2F4DFJLLACJDbIcu0K7lcSNnYzUfD3O9DAsZ2OXSqdc1_cSUlHYUKDN2_2mCxEHdDscNwxKG8QGgD8h51QrXcuG_XhaatmoWvJWnJGLnPcAoKmSz8kZA6GYpPSc_Px6nNwuxSn8sXOIUxX76n1w8zHmGYewjJUP2cXgsZTW7zCvkJ18lQ8JrQ_Tr2rJ67nKmVMZK--4qo_JYX5BnvV2yPjy_r4k3z9--HZ9U2-_fPp8fbWtneDtXAvsmNMdAuOUa9li0zXYyl4LD8p3rC1yu160QtC2cwIUKAeSw1q6Hji_JG9O7-7sYA4pjDYdTbTB3FxtzdorFjVKcnpLC_v6xB5S_L1gns1YfojDYCeMSza6mNYwJvmjpBK65ZpzUUh9Il0xICfsH0RQMGtiZm_-J2bWxAwIA3fSX90vWboR_cPgv4gK8O4EYDHwNmAy2QWcHPqQiuPGx_D4lr8eM6xp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748938334</pqid></control><display><type>article</type><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</creator><creatorcontrib>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</creatorcontrib><description>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17
mM)
Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5
s. Secondly applying a high potential pulse (2.5
V/Ref, 0.1
s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim
E
Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11
s after the electric pulse and the next ones appear regularly, separated by about 10
s. Synchronized actin-polymerization activity continues for 40
s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2010.04.003</identifier><identifier>PMID: 20472511</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Actins - metabolism ; Biotechnology ; Cell adhesion ; Cell Adhesion - physiology ; Cell Movement - physiology ; Chemical Sciences ; Computer Science ; Dictyostelium - cytology ; Dictyostelium - physiology ; Dictyostelium discoideum ; Electrochemistry ; Electrophysiological Phenomena ; Electrostatic forces ; Fluorescence ; Green Fluorescent Proteins - analysis ; Indium Tin Oxide ; Intracellular Membranes - metabolism ; Life Sciences ; Lim EΔcoil fluorescence ; Material chemistry ; Microscopy, Interference ; Reflection Interference Contrast Microscopy ; Static Electricity ; Tin Compounds - chemistry</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2010-10, Vol.79 (2), p.198-210</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</citedby><cites>FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</cites><orcidid>0000-0001-5180-6758 ; 0000-0003-1646-5315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567539410000708$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20472511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01067531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Socol, Marius</creatorcontrib><creatorcontrib>Lefrou, Christine</creatorcontrib><creatorcontrib>Bruckert, Franz</creatorcontrib><creatorcontrib>Delabouglise, Didier</creatorcontrib><creatorcontrib>Weidenhaupt, Marianne</creatorcontrib><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17
mM)
Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5
s. Secondly applying a high potential pulse (2.5
V/Ref, 0.1
s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim
E
Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11
s after the electric pulse and the next ones appear regularly, separated by about 10
s. Synchronized actin-polymerization activity continues for 40
s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</description><subject>Actins - metabolism</subject><subject>Biotechnology</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Movement - physiology</subject><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Dictyostelium - cytology</subject><subject>Dictyostelium - physiology</subject><subject>Dictyostelium discoideum</subject><subject>Electrochemistry</subject><subject>Electrophysiological Phenomena</subject><subject>Electrostatic forces</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Indium Tin Oxide</subject><subject>Intracellular Membranes - metabolism</subject><subject>Life Sciences</subject><subject>Lim EΔcoil fluorescence</subject><subject>Material chemistry</subject><subject>Microscopy, Interference</subject><subject>Reflection Interference Contrast Microscopy</subject><subject>Static Electricity</subject><subject>Tin Compounds - chemistry</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuO1DAQRS0EYh7wCyg7xCJN-RU7y2F4DFJLLACJDbIcu0K7lcSNnYzUfD3O9DAsZ2OXSqdc1_cSUlHYUKDN2_2mCxEHdDscNwxKG8QGgD8h51QrXcuG_XhaatmoWvJWnJGLnPcAoKmSz8kZA6GYpPSc_Px6nNwuxSn8sXOIUxX76n1w8zHmGYewjJUP2cXgsZTW7zCvkJ18lQ8JrQ_Tr2rJ67nKmVMZK--4qo_JYX5BnvV2yPjy_r4k3z9--HZ9U2-_fPp8fbWtneDtXAvsmNMdAuOUa9li0zXYyl4LD8p3rC1yu160QtC2cwIUKAeSw1q6Hji_JG9O7-7sYA4pjDYdTbTB3FxtzdorFjVKcnpLC_v6xB5S_L1gns1YfojDYCeMSza6mNYwJvmjpBK65ZpzUUh9Il0xICfsH0RQMGtiZm_-J2bWxAwIA3fSX90vWboR_cPgv4gK8O4EYDHwNmAy2QWcHPqQiuPGx_D4lr8eM6xp</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Socol, Marius</creator><creator>Lefrou, Christine</creator><creator>Bruckert, Franz</creator><creator>Delabouglise, Didier</creator><creator>Weidenhaupt, Marianne</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5180-6758</orcidid><orcidid>https://orcid.org/0000-0003-1646-5315</orcidid></search><sort><creationdate>20101001</creationdate><title>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</title><author>Socol, Marius ; Lefrou, Christine ; Bruckert, Franz ; Delabouglise, Didier ; Weidenhaupt, Marianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-4eb2c8be02313859e6b6e95f84d07db29047bf494419bc40707c0530c407cf033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actins - metabolism</topic><topic>Biotechnology</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Movement - physiology</topic><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Dictyostelium - cytology</topic><topic>Dictyostelium - physiology</topic><topic>Dictyostelium discoideum</topic><topic>Electrochemistry</topic><topic>Electrophysiological Phenomena</topic><topic>Electrostatic forces</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Indium Tin Oxide</topic><topic>Intracellular Membranes - metabolism</topic><topic>Life Sciences</topic><topic>Lim EΔcoil fluorescence</topic><topic>Material chemistry</topic><topic>Microscopy, Interference</topic><topic>Reflection Interference Contrast Microscopy</topic><topic>Static Electricity</topic><topic>Tin Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Socol, Marius</creatorcontrib><creatorcontrib>Lefrou, Christine</creatorcontrib><creatorcontrib>Bruckert, Franz</creatorcontrib><creatorcontrib>Delabouglise, Didier</creatorcontrib><creatorcontrib>Weidenhaupt, Marianne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Socol, Marius</au><au>Lefrou, Christine</au><au>Bruckert, Franz</au><au>Delabouglise, Didier</au><au>Weidenhaupt, Marianne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>79</volume><issue>2</issue><spage>198</spage><epage>210</epage><pages>198-210</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17
mM)
Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5
s. Secondly applying a high potential pulse (2.5
V/Ref, 0.1
s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by Lim
E
Δcoil-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8–11
s after the electric pulse and the next ones appear regularly, separated by about 10
s. Synchronized actin-polymerization activity continues for 40
s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20472511</pmid><doi>10.1016/j.bioelechem.2010.04.003</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5180-6758</orcidid><orcidid>https://orcid.org/0000-0003-1646-5315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2010-10, Vol.79 (2), p.198-210 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01067531v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Actins - metabolism Biotechnology Cell adhesion Cell Adhesion - physiology Cell Movement - physiology Chemical Sciences Computer Science Dictyostelium - cytology Dictyostelium - physiology Dictyostelium discoideum Electrochemistry Electrophysiological Phenomena Electrostatic forces Fluorescence Green Fluorescent Proteins - analysis Indium Tin Oxide Intracellular Membranes - metabolism Life Sciences Lim EΔcoil fluorescence Material chemistry Microscopy, Interference Reflection Interference Contrast Microscopy Static Electricity Tin Compounds - chemistry |
title | Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Dictyostelium%20discoideum%20adhesion%20and%20spreading%20using%20electrostatic%20forces&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Socol,%20Marius&rft.date=2010-10-01&rft.volume=79&rft.issue=2&rft.spage=198&rft.epage=210&rft.pages=198-210&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2010.04.003&rft_dat=%3Cproquest_hal_p%3E856762253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748938334&rft_id=info:pmid/20472511&rft_els_id=S1567539410000708&rfr_iscdi=true |