The stable vanadium isotope composition of the mantle and mafic lavas

Vanadium exists in multiple valence states under terrestrial conditions (2+, 3+, 4+, 5+) and its isotopic composition in magmas potentially reflects the oxidation state of their mantle source. We present the first stable vanadium isotope measurements of 64 samples of well-characterized mantle-derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2013-03, Vol.365, p.177-189
Hauptverfasser: Prytulak, J., Nielsen, S.G., Ionov, D.A., Halliday, A.N., Harvey, J., Kelley, K.A., Niu, Y.L., Peate, D.W., Shimizu, K., Sims, K.W.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 177
container_title Earth and planetary science letters
container_volume 365
creator Prytulak, J.
Nielsen, S.G.
Ionov, D.A.
Halliday, A.N.
Harvey, J.
Kelley, K.A.
Niu, Y.L.
Peate, D.W.
Shimizu, K.
Sims, K.W.W.
description Vanadium exists in multiple valence states under terrestrial conditions (2+, 3+, 4+, 5+) and its isotopic composition in magmas potentially reflects the oxidation state of their mantle source. We present the first stable vanadium isotope measurements of 64 samples of well-characterized mantle-derived mafic and ultramafic rocks from diverse localities. The δ51V ranges from −0.27‰ to −1.29‰, reported relative to an Alfa Aesar (AA) vanadium solution standard defined as 0‰. This dataset is used to assess the effects of alteration, examine co-variation with other geochemical characteristics and define a value for the bulk silicate Earth (BSE). Variably serpentinised peridotites show no resolvable alteration-induced δ51V fractionation. Likewise, altered mafic oceanic crustal rocks have identical δ51V to fresh hand-picked MORB glass. Intense seafloor weathering can result in slightly (∼0.2–0.3‰) heavier isotope compositions, possibly related to late-stage addition of vanadium. The robustness of δ51V to common alteration processes bodes well for its potential application to ancient mafic material. The average δ51V of mafic lavas, including MORB, Icelandic tholeiites and lavas from the Shatsky Rise large igneous province is −0.88±0.27‰ 2sd. Peridotites show a large range in primary δ51V (−0.62‰ to −1.17‰), which co-varies positively with vanadium concentrations and indices of fertility such as Al2O3. Although these data suggest preferential extraction of heavier isotopes during partial melting, the isotope composition of basalts (δ51V=−0.88±0.27‰ 2sd) and MORB glass in particular (δ51V=−0.95±0.13‰ 2sd) is lighter than fertile peridotites and thus difficult to reconcile with a melt extraction scenario. Determination of fractionation factors between melt and mineral phases such as pyroxenes and garnet are necessary to fully understand the correlation. We arrive at an estimate of δ51VBSE=−0.7±0.2‰ (2sd) for the bulk silicate Earth by averaging fertile, unmetasomatised peridotites. This provides a benchmark for both high and low temperature applications addressing planet formation, cosmochemical comparisons of the Earth and extraterrestrial material, and an inorganic baseline for future biogeochemical investigations. Whilst δ51V could relate to oxidation state and thus oxygen fugacity, further work is required to resolve the isotopic effects of oxidation state, partial melting, and mineral fractionation factors. ► First stable vanadium isotope dataset for the mantle an
doi_str_mv 10.1016/j.epsl.2013.01.010
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01058388v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X13000186</els_id><sourcerecordid>oai_HAL_hal_01058388v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-a659ebe0c4136238116ca10fad5dc14ab49dcae4c6b6ae9f3c9f938e5bf515093</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-9euiaaZrYgpdlWf_AgpcV9ham6YTN0jalqQW_vSkrHoWBGR7vN_AeY_fAV8BBPZ5W1IdmlXEQKw5x-AVbgChkGpXDJVtwDllaZHC4ZjchnDjnSqpywbb7IyVhxKqhZMIOa_fVJi740feUGN_2PrjR-S7xNhmjtcVujFbs6nhaZ5IGJwy37MpiE-judy_Z58t2v3lLdx-v75v1LkUhn8YUlSypIm5yECoTBYAyCNxiLWsDOVZ5WRuk3KhKIZVWmNKWoiBZWQmSl2LJHs5_j9jofnAtDt_ao9Nv652etRhcFqIoJoje7Ow1gw9hIPsHANdzafqk59L0XFoEZzZCz2eIYorJ0aCDcdQZqt1AZtS1d__hP1Tqdb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The stable vanadium isotope composition of the mantle and mafic lavas</title><source>Elsevier ScienceDirect Journals</source><creator>Prytulak, J. ; Nielsen, S.G. ; Ionov, D.A. ; Halliday, A.N. ; Harvey, J. ; Kelley, K.A. ; Niu, Y.L. ; Peate, D.W. ; Shimizu, K. ; Sims, K.W.W.</creator><creatorcontrib>Prytulak, J. ; Nielsen, S.G. ; Ionov, D.A. ; Halliday, A.N. ; Harvey, J. ; Kelley, K.A. ; Niu, Y.L. ; Peate, D.W. ; Shimizu, K. ; Sims, K.W.W.</creatorcontrib><description>Vanadium exists in multiple valence states under terrestrial conditions (2+, 3+, 4+, 5+) and its isotopic composition in magmas potentially reflects the oxidation state of their mantle source. We present the first stable vanadium isotope measurements of 64 samples of well-characterized mantle-derived mafic and ultramafic rocks from diverse localities. The δ51V ranges from −0.27‰ to −1.29‰, reported relative to an Alfa Aesar (AA) vanadium solution standard defined as 0‰. This dataset is used to assess the effects of alteration, examine co-variation with other geochemical characteristics and define a value for the bulk silicate Earth (BSE). Variably serpentinised peridotites show no resolvable alteration-induced δ51V fractionation. Likewise, altered mafic oceanic crustal rocks have identical δ51V to fresh hand-picked MORB glass. Intense seafloor weathering can result in slightly (∼0.2–0.3‰) heavier isotope compositions, possibly related to late-stage addition of vanadium. The robustness of δ51V to common alteration processes bodes well for its potential application to ancient mafic material. The average δ51V of mafic lavas, including MORB, Icelandic tholeiites and lavas from the Shatsky Rise large igneous province is −0.88±0.27‰ 2sd. Peridotites show a large range in primary δ51V (−0.62‰ to −1.17‰), which co-varies positively with vanadium concentrations and indices of fertility such as Al2O3. Although these data suggest preferential extraction of heavier isotopes during partial melting, the isotope composition of basalts (δ51V=−0.88±0.27‰ 2sd) and MORB glass in particular (δ51V=−0.95±0.13‰ 2sd) is lighter than fertile peridotites and thus difficult to reconcile with a melt extraction scenario. Determination of fractionation factors between melt and mineral phases such as pyroxenes and garnet are necessary to fully understand the correlation. We arrive at an estimate of δ51VBSE=−0.7±0.2‰ (2sd) for the bulk silicate Earth by averaging fertile, unmetasomatised peridotites. This provides a benchmark for both high and low temperature applications addressing planet formation, cosmochemical comparisons of the Earth and extraterrestrial material, and an inorganic baseline for future biogeochemical investigations. Whilst δ51V could relate to oxidation state and thus oxygen fugacity, further work is required to resolve the isotopic effects of oxidation state, partial melting, and mineral fractionation factors. ► First stable vanadium isotope dataset for the mantle and mantle-derived lavas. ► Resolvable vanadium isotope fractionation at high temperature. ► Altered and fresh MORB have similar V isotope compositions. ► Positive correlations between δ51V, V, and Al2O3 in peridotites. ► Bulk Silicate Earth is estimated at δ51V=−0.7±0.2‰.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2013.01.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>bulk silicate Earth ; Earth Sciences ; Environmental Sciences ; Geochemistry ; Global Changes ; high temperature stable isotope fractionation ; Sciences of the Universe ; vanadium isotopes</subject><ispartof>Earth and planetary science letters, 2013-03, Vol.365, p.177-189</ispartof><rights>2013 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-a659ebe0c4136238116ca10fad5dc14ab49dcae4c6b6ae9f3c9f938e5bf515093</citedby><cites>FETCH-LOGICAL-a357t-a659ebe0c4136238116ca10fad5dc14ab49dcae4c6b6ae9f3c9f938e5bf515093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsl.2013.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01058388$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prytulak, J.</creatorcontrib><creatorcontrib>Nielsen, S.G.</creatorcontrib><creatorcontrib>Ionov, D.A.</creatorcontrib><creatorcontrib>Halliday, A.N.</creatorcontrib><creatorcontrib>Harvey, J.</creatorcontrib><creatorcontrib>Kelley, K.A.</creatorcontrib><creatorcontrib>Niu, Y.L.</creatorcontrib><creatorcontrib>Peate, D.W.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Sims, K.W.W.</creatorcontrib><title>The stable vanadium isotope composition of the mantle and mafic lavas</title><title>Earth and planetary science letters</title><description>Vanadium exists in multiple valence states under terrestrial conditions (2+, 3+, 4+, 5+) and its isotopic composition in magmas potentially reflects the oxidation state of their mantle source. We present the first stable vanadium isotope measurements of 64 samples of well-characterized mantle-derived mafic and ultramafic rocks from diverse localities. The δ51V ranges from −0.27‰ to −1.29‰, reported relative to an Alfa Aesar (AA) vanadium solution standard defined as 0‰. This dataset is used to assess the effects of alteration, examine co-variation with other geochemical characteristics and define a value for the bulk silicate Earth (BSE). Variably serpentinised peridotites show no resolvable alteration-induced δ51V fractionation. Likewise, altered mafic oceanic crustal rocks have identical δ51V to fresh hand-picked MORB glass. Intense seafloor weathering can result in slightly (∼0.2–0.3‰) heavier isotope compositions, possibly related to late-stage addition of vanadium. The robustness of δ51V to common alteration processes bodes well for its potential application to ancient mafic material. The average δ51V of mafic lavas, including MORB, Icelandic tholeiites and lavas from the Shatsky Rise large igneous province is −0.88±0.27‰ 2sd. Peridotites show a large range in primary δ51V (−0.62‰ to −1.17‰), which co-varies positively with vanadium concentrations and indices of fertility such as Al2O3. Although these data suggest preferential extraction of heavier isotopes during partial melting, the isotope composition of basalts (δ51V=−0.88±0.27‰ 2sd) and MORB glass in particular (δ51V=−0.95±0.13‰ 2sd) is lighter than fertile peridotites and thus difficult to reconcile with a melt extraction scenario. Determination of fractionation factors between melt and mineral phases such as pyroxenes and garnet are necessary to fully understand the correlation. We arrive at an estimate of δ51VBSE=−0.7±0.2‰ (2sd) for the bulk silicate Earth by averaging fertile, unmetasomatised peridotites. This provides a benchmark for both high and low temperature applications addressing planet formation, cosmochemical comparisons of the Earth and extraterrestrial material, and an inorganic baseline for future biogeochemical investigations. Whilst δ51V could relate to oxidation state and thus oxygen fugacity, further work is required to resolve the isotopic effects of oxidation state, partial melting, and mineral fractionation factors. ► First stable vanadium isotope dataset for the mantle and mantle-derived lavas. ► Resolvable vanadium isotope fractionation at high temperature. ► Altered and fresh MORB have similar V isotope compositions. ► Positive correlations between δ51V, V, and Al2O3 in peridotites. ► Bulk Silicate Earth is estimated at δ51V=−0.7±0.2‰.</description><subject>bulk silicate Earth</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Geochemistry</subject><subject>Global Changes</subject><subject>high temperature stable isotope fractionation</subject><subject>Sciences of the Universe</subject><subject>vanadium isotopes</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-9euiaaZrYgpdlWf_AgpcV9ham6YTN0jalqQW_vSkrHoWBGR7vN_AeY_fAV8BBPZ5W1IdmlXEQKw5x-AVbgChkGpXDJVtwDllaZHC4ZjchnDjnSqpywbb7IyVhxKqhZMIOa_fVJi740feUGN_2PrjR-S7xNhmjtcVujFbs6nhaZ5IGJwy37MpiE-judy_Z58t2v3lLdx-v75v1LkUhn8YUlSypIm5yECoTBYAyCNxiLWsDOVZ5WRuk3KhKIZVWmNKWoiBZWQmSl2LJHs5_j9jofnAtDt_ao9Nv652etRhcFqIoJoje7Ow1gw9hIPsHANdzafqk59L0XFoEZzZCz2eIYorJ0aCDcdQZqt1AZtS1d__hP1Tqdb4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Prytulak, J.</creator><creator>Nielsen, S.G.</creator><creator>Ionov, D.A.</creator><creator>Halliday, A.N.</creator><creator>Harvey, J.</creator><creator>Kelley, K.A.</creator><creator>Niu, Y.L.</creator><creator>Peate, D.W.</creator><creator>Shimizu, K.</creator><creator>Sims, K.W.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20130301</creationdate><title>The stable vanadium isotope composition of the mantle and mafic lavas</title><author>Prytulak, J. ; Nielsen, S.G. ; Ionov, D.A. ; Halliday, A.N. ; Harvey, J. ; Kelley, K.A. ; Niu, Y.L. ; Peate, D.W. ; Shimizu, K. ; Sims, K.W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-a659ebe0c4136238116ca10fad5dc14ab49dcae4c6b6ae9f3c9f938e5bf515093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bulk silicate Earth</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Geochemistry</topic><topic>Global Changes</topic><topic>high temperature stable isotope fractionation</topic><topic>Sciences of the Universe</topic><topic>vanadium isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prytulak, J.</creatorcontrib><creatorcontrib>Nielsen, S.G.</creatorcontrib><creatorcontrib>Ionov, D.A.</creatorcontrib><creatorcontrib>Halliday, A.N.</creatorcontrib><creatorcontrib>Harvey, J.</creatorcontrib><creatorcontrib>Kelley, K.A.</creatorcontrib><creatorcontrib>Niu, Y.L.</creatorcontrib><creatorcontrib>Peate, D.W.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Sims, K.W.W.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prytulak, J.</au><au>Nielsen, S.G.</au><au>Ionov, D.A.</au><au>Halliday, A.N.</au><au>Harvey, J.</au><au>Kelley, K.A.</au><au>Niu, Y.L.</au><au>Peate, D.W.</au><au>Shimizu, K.</au><au>Sims, K.W.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stable vanadium isotope composition of the mantle and mafic lavas</atitle><jtitle>Earth and planetary science letters</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>365</volume><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>Vanadium exists in multiple valence states under terrestrial conditions (2+, 3+, 4+, 5+) and its isotopic composition in magmas potentially reflects the oxidation state of their mantle source. We present the first stable vanadium isotope measurements of 64 samples of well-characterized mantle-derived mafic and ultramafic rocks from diverse localities. The δ51V ranges from −0.27‰ to −1.29‰, reported relative to an Alfa Aesar (AA) vanadium solution standard defined as 0‰. This dataset is used to assess the effects of alteration, examine co-variation with other geochemical characteristics and define a value for the bulk silicate Earth (BSE). Variably serpentinised peridotites show no resolvable alteration-induced δ51V fractionation. Likewise, altered mafic oceanic crustal rocks have identical δ51V to fresh hand-picked MORB glass. Intense seafloor weathering can result in slightly (∼0.2–0.3‰) heavier isotope compositions, possibly related to late-stage addition of vanadium. The robustness of δ51V to common alteration processes bodes well for its potential application to ancient mafic material. The average δ51V of mafic lavas, including MORB, Icelandic tholeiites and lavas from the Shatsky Rise large igneous province is −0.88±0.27‰ 2sd. Peridotites show a large range in primary δ51V (−0.62‰ to −1.17‰), which co-varies positively with vanadium concentrations and indices of fertility such as Al2O3. Although these data suggest preferential extraction of heavier isotopes during partial melting, the isotope composition of basalts (δ51V=−0.88±0.27‰ 2sd) and MORB glass in particular (δ51V=−0.95±0.13‰ 2sd) is lighter than fertile peridotites and thus difficult to reconcile with a melt extraction scenario. Determination of fractionation factors between melt and mineral phases such as pyroxenes and garnet are necessary to fully understand the correlation. We arrive at an estimate of δ51VBSE=−0.7±0.2‰ (2sd) for the bulk silicate Earth by averaging fertile, unmetasomatised peridotites. This provides a benchmark for both high and low temperature applications addressing planet formation, cosmochemical comparisons of the Earth and extraterrestrial material, and an inorganic baseline for future biogeochemical investigations. Whilst δ51V could relate to oxidation state and thus oxygen fugacity, further work is required to resolve the isotopic effects of oxidation state, partial melting, and mineral fractionation factors. ► First stable vanadium isotope dataset for the mantle and mantle-derived lavas. ► Resolvable vanadium isotope fractionation at high temperature. ► Altered and fresh MORB have similar V isotope compositions. ► Positive correlations between δ51V, V, and Al2O3 in peridotites. ► Bulk Silicate Earth is estimated at δ51V=−0.7±0.2‰.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2013.01.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2013-03, Vol.365, p.177-189
issn 0012-821X
1385-013X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01058388v1
source Elsevier ScienceDirect Journals
subjects bulk silicate Earth
Earth Sciences
Environmental Sciences
Geochemistry
Global Changes
high temperature stable isotope fractionation
Sciences of the Universe
vanadium isotopes
title The stable vanadium isotope composition of the mantle and mafic lavas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stable%20vanadium%20isotope%20composition%20of%20the%20mantle%20and%20mafic%20lavas&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Prytulak,%20J.&rft.date=2013-03-01&rft.volume=365&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2013.01.010&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01058388v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012821X13000186&rfr_iscdi=true