Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes

[Display omitted] Mesoporous TiO2 nanocrystals were prepared by a simple and fast hydrolytic process, in the presence of tetrabutylammonium bromide surfactant, and their ambient temperature electrochemical behaviour as high-rate Li-ion battery anodes was successfully demonstrated even after very lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-05, Vol.69, p.60-67
Hauptverfasser: Di Lupo, F., Tuel, A., Mendez, V., Francia, C., Meligrana, G., Bodoardo, S., Gerbaldi, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 60
container_title Acta materialia
container_volume 69
creator Di Lupo, F.
Tuel, A.
Mendez, V.
Francia, C.
Meligrana, G.
Bodoardo, S.
Gerbaldi, C.
description [Display omitted] Mesoporous TiO2 nanocrystals were prepared by a simple and fast hydrolytic process, in the presence of tetrabutylammonium bromide surfactant, and their ambient temperature electrochemical behaviour as high-rate Li-ion battery anodes was successfully demonstrated even after very long-term cycling (>1000 cycles). Samples were thoroughly characterized by X-ray diffraction, transmission electron microscopy, nitrogen physisorption analyses and electrochemical techniques. Using a novel synthesis approach, regular mesoporous TiO2 anatase phase with a specific surface area of 258m2g−1 and a good degree of crystallinity was directly obtained without further treatments. The material was also calcined at different temperatures between 250 and 550°C, to increase the degree of crystallization and assess the influence of the structural modifications on the electrochemical characteristics. Very good rate capability and excellent stability upon very prolonged cycling were achieved, thus indicating the prospects of the prepared materials for next-generation high-power lithium-based batteries.
doi_str_mv 10.1016/j.actamat.2014.01.057
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01057448v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414000780</els_id><sourcerecordid>1880036980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-30a2a507c16a29ba074b0b5662327c7cb0a783ee5ecbe56af7b8b1724b839bf83</originalsourceid><addsrcrecordid>eNqFkc1qGzEUhYfQQtO0j1DQJtAuZqrfkbwqIbRJwSWbdC2uNHdsmfHIleTAvH1lbLLNSkL67jncc5rmC6Mdo6z_vuvAF9hD6ThlsqOso0pfNdfMaNFyqcS7ehdq1fZSyQ_Nx5x3lDKuJb1u0h_M8RBTPGbyHJ44mWGOPi25wJTJIcXh6HEgbiFARsiFbJchxWkpwZ9-PeZMIJNt2GzbBAXJFOdNO1UyzBuyDm2IM3FQCqYqMccB86fm_VjF8fPlvGn-_vr5fP_Yrp8eft_frVsvpSitoMBBUe1ZD3zlgGrpqFN9zwXXXntHQRuBqNA7VD2M2hnHNJfOiJUbjbhpvp11tzDZQwp7SIuNEOzj3dqe3iirOUlpXlhlv57ZutO_I-Zi9yF7nCaYsUZjmTGUin5laEXVGfUp5pxwfNVm1J76sDt76cOe-qg2tvrUuduLBWQP05hg9iG_DnMjlJK8r9yPM4c1m5eAyWYfcK4thIS-2CGGN5z-A7Nho_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880036980</pqid></control><display><type>article</type><title>Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Di Lupo, F. ; Tuel, A. ; Mendez, V. ; Francia, C. ; Meligrana, G. ; Bodoardo, S. ; Gerbaldi, C.</creator><creatorcontrib>Di Lupo, F. ; Tuel, A. ; Mendez, V. ; Francia, C. ; Meligrana, G. ; Bodoardo, S. ; Gerbaldi, C.</creatorcontrib><description>[Display omitted] Mesoporous TiO2 nanocrystals were prepared by a simple and fast hydrolytic process, in the presence of tetrabutylammonium bromide surfactant, and their ambient temperature electrochemical behaviour as high-rate Li-ion battery anodes was successfully demonstrated even after very long-term cycling (&gt;1000 cycles). Samples were thoroughly characterized by X-ray diffraction, transmission electron microscopy, nitrogen physisorption analyses and electrochemical techniques. Using a novel synthesis approach, regular mesoporous TiO2 anatase phase with a specific surface area of 258m2g−1 and a good degree of crystallinity was directly obtained without further treatments. The material was also calcined at different temperatures between 250 and 550°C, to increase the degree of crystallization and assess the influence of the structural modifications on the electrochemical characteristics. Very good rate capability and excellent stability upon very prolonged cycling were achieved, thus indicating the prospects of the prepared materials for next-generation high-power lithium-based batteries.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.01.057</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anatase ; Anodes ; Applied sciences ; Catalysis ; Chemical Sciences ; Cycles ; Environment and Society ; Environmental Sciences ; Exact sciences and technology ; Lithium battery anode ; Lithium-ion batteries ; Mesoporous ; Metals. Metallurgy ; Nanocrystal ; Nanocrystals ; Rechargeable batteries ; Roasting ; Specific surface ; Titanium dioxide ; Titanium oxide</subject><ispartof>Acta materialia, 2014-05, Vol.69, p.60-67</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-30a2a507c16a29ba074b0b5662327c7cb0a783ee5ecbe56af7b8b1724b839bf83</citedby><cites>FETCH-LOGICAL-c443t-30a2a507c16a29ba074b0b5662327c7cb0a783ee5ecbe56af7b8b1724b839bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.01.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28355426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01057448$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Lupo, F.</creatorcontrib><creatorcontrib>Tuel, A.</creatorcontrib><creatorcontrib>Mendez, V.</creatorcontrib><creatorcontrib>Francia, C.</creatorcontrib><creatorcontrib>Meligrana, G.</creatorcontrib><creatorcontrib>Bodoardo, S.</creatorcontrib><creatorcontrib>Gerbaldi, C.</creatorcontrib><title>Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes</title><title>Acta materialia</title><description>[Display omitted] Mesoporous TiO2 nanocrystals were prepared by a simple and fast hydrolytic process, in the presence of tetrabutylammonium bromide surfactant, and their ambient temperature electrochemical behaviour as high-rate Li-ion battery anodes was successfully demonstrated even after very long-term cycling (&gt;1000 cycles). Samples were thoroughly characterized by X-ray diffraction, transmission electron microscopy, nitrogen physisorption analyses and electrochemical techniques. Using a novel synthesis approach, regular mesoporous TiO2 anatase phase with a specific surface area of 258m2g−1 and a good degree of crystallinity was directly obtained without further treatments. The material was also calcined at different temperatures between 250 and 550°C, to increase the degree of crystallization and assess the influence of the structural modifications on the electrochemical characteristics. Very good rate capability and excellent stability upon very prolonged cycling were achieved, thus indicating the prospects of the prepared materials for next-generation high-power lithium-based batteries.</description><subject>Anatase</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Cycles</subject><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Lithium battery anode</subject><subject>Lithium-ion batteries</subject><subject>Mesoporous</subject><subject>Metals. Metallurgy</subject><subject>Nanocrystal</subject><subject>Nanocrystals</subject><subject>Rechargeable batteries</subject><subject>Roasting</subject><subject>Specific surface</subject><subject>Titanium dioxide</subject><subject>Titanium oxide</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEUhYfQQtO0j1DQJtAuZqrfkbwqIbRJwSWbdC2uNHdsmfHIleTAvH1lbLLNSkL67jncc5rmC6Mdo6z_vuvAF9hD6ThlsqOso0pfNdfMaNFyqcS7ehdq1fZSyQ_Nx5x3lDKuJb1u0h_M8RBTPGbyHJ44mWGOPi25wJTJIcXh6HEgbiFARsiFbJchxWkpwZ9-PeZMIJNt2GzbBAXJFOdNO1UyzBuyDm2IM3FQCqYqMccB86fm_VjF8fPlvGn-_vr5fP_Yrp8eft_frVsvpSitoMBBUe1ZD3zlgGrpqFN9zwXXXntHQRuBqNA7VD2M2hnHNJfOiJUbjbhpvp11tzDZQwp7SIuNEOzj3dqe3iirOUlpXlhlv57ZutO_I-Zi9yF7nCaYsUZjmTGUin5laEXVGfUp5pxwfNVm1J76sDt76cOe-qg2tvrUuduLBWQP05hg9iG_DnMjlJK8r9yPM4c1m5eAyWYfcK4thIS-2CGGN5z-A7Nho_4</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Di Lupo, F.</creator><creator>Tuel, A.</creator><creator>Mendez, V.</creator><creator>Francia, C.</creator><creator>Meligrana, G.</creator><creator>Bodoardo, S.</creator><creator>Gerbaldi, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20140501</creationdate><title>Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes</title><author>Di Lupo, F. ; Tuel, A. ; Mendez, V. ; Francia, C. ; Meligrana, G. ; Bodoardo, S. ; Gerbaldi, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-30a2a507c16a29ba074b0b5662327c7cb0a783ee5ecbe56af7b8b1724b839bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anatase</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Cycles</topic><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Lithium battery anode</topic><topic>Lithium-ion batteries</topic><topic>Mesoporous</topic><topic>Metals. Metallurgy</topic><topic>Nanocrystal</topic><topic>Nanocrystals</topic><topic>Rechargeable batteries</topic><topic>Roasting</topic><topic>Specific surface</topic><topic>Titanium dioxide</topic><topic>Titanium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Lupo, F.</creatorcontrib><creatorcontrib>Tuel, A.</creatorcontrib><creatorcontrib>Mendez, V.</creatorcontrib><creatorcontrib>Francia, C.</creatorcontrib><creatorcontrib>Meligrana, G.</creatorcontrib><creatorcontrib>Bodoardo, S.</creatorcontrib><creatorcontrib>Gerbaldi, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Lupo, F.</au><au>Tuel, A.</au><au>Mendez, V.</au><au>Francia, C.</au><au>Meligrana, G.</au><au>Bodoardo, S.</au><au>Gerbaldi, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes</atitle><jtitle>Acta materialia</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>69</volume><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted] Mesoporous TiO2 nanocrystals were prepared by a simple and fast hydrolytic process, in the presence of tetrabutylammonium bromide surfactant, and their ambient temperature electrochemical behaviour as high-rate Li-ion battery anodes was successfully demonstrated even after very long-term cycling (&gt;1000 cycles). Samples were thoroughly characterized by X-ray diffraction, transmission electron microscopy, nitrogen physisorption analyses and electrochemical techniques. Using a novel synthesis approach, regular mesoporous TiO2 anatase phase with a specific surface area of 258m2g−1 and a good degree of crystallinity was directly obtained without further treatments. The material was also calcined at different temperatures between 250 and 550°C, to increase the degree of crystallization and assess the influence of the structural modifications on the electrochemical characteristics. Very good rate capability and excellent stability upon very prolonged cycling were achieved, thus indicating the prospects of the prepared materials for next-generation high-power lithium-based batteries.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.01.057</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-05, Vol.69, p.60-67
issn 1359-6454
1873-2453
language eng
recordid cdi_hal_primary_oai_HAL_hal_01057448v1
source Access via ScienceDirect (Elsevier)
subjects Anatase
Anodes
Applied sciences
Catalysis
Chemical Sciences
Cycles
Environment and Society
Environmental Sciences
Exact sciences and technology
Lithium battery anode
Lithium-ion batteries
Mesoporous
Metals. Metallurgy
Nanocrystal
Nanocrystals
Rechargeable batteries
Roasting
Specific surface
Titanium dioxide
Titanium oxide
title Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20TiO2%20nanocrystals%20produced%20by%20a%20fast%20hydrolytic%20process%20as%20high-rate%20long-lasting%20Li-ion%20battery%20anodes&rft.jtitle=Acta%20materialia&rft.au=Di%20Lupo,%20F.&rft.date=2014-05-01&rft.volume=69&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.01.057&rft_dat=%3Cproquest_hal_p%3E1880036980%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880036980&rft_id=info:pmid/&rft_els_id=S1359645414000780&rfr_iscdi=true