Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)

Nuclear magnetic resonance (NMR), stable isotope geochemistry of micro-sampled cores, NMR well-logs and 3D modeling are used to investigate the carbonate permeability-porosity heterogeneity along 230 m-thick limestones of the Paris Basin. Despite the global low porosity and permeability of the limes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine and petroleum geology 2014-11, Vol.57, p.631-651
Hauptverfasser: Brigaud, Benjamin, Vincent, Benoît, Durlet, Christophe, Deconinck, Jean-François, Jobard, Emmanuel, Pickard, Neil, Yven, Béatrice, Landrein, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue
container_start_page 631
container_title Marine and petroleum geology
container_volume 57
creator Brigaud, Benjamin
Vincent, Benoît
Durlet, Christophe
Deconinck, Jean-François
Jobard, Emmanuel
Pickard, Neil
Yven, Béatrice
Landrein, Philippe
description Nuclear magnetic resonance (NMR), stable isotope geochemistry of micro-sampled cores, NMR well-logs and 3D modeling are used to investigate the carbonate permeability-porosity heterogeneity along 230 m-thick limestones of the Paris Basin. Despite the global low porosity and permeability of the limestones, two aquifers units with porosity greater than 15% were identified. These two aquifers are very different in terms of pore through radii and NMR signal. The first one (A1: Aquifer 1) is a 7 m-thick mudstone unit, dominated by extended microporosity with pore throat radii of 0.25 μm to 0.3 μm. The second one (A2: Aquifer 2) is a 15 m-thick oolitic grainstone units showing macropores reaching 100 μm and pore throat radii of 32 μm. From core descriptions and wireline logs on 26 wells, a 3D static geological model is build. The fine tuning of permeability calculations from NMR logs realized along 12 of the wells, allows porosity and permeability heterogeneity to be distributed within a 3D model at the reservoir scale (area of about 2000 km2) which match the flow behavior illustrated by well tests. Associated with early meteoric calcite cements and poorly developed burial blocky calcite cements, the porous and permeable intervals may be predicted in two stratigraphic and diagenetic considerations. Firstly, the syn-sedimentary meteoric dissolution or neomorphism of the initial high magnesium calcite and aragonite particles or clasts into low magnesium calcite particles or cements prevented most mechanical and chemical compaction during the first steps of burial. Secondly, the regional stratigraphic architecture reveals the presence of local permeability barriers, which prevented Early Cretaceous lateral meteoric water circulation and the associated burial calcite cementation. •Carbonate permeability-porosity heterogeneity has been traced.•3D static geological model is built using Petrel®.•NMR logs allows porosity and permeability to be distributed within a 3D model.•Porous and permeable intervals may be predicted.
doi_str_mv 10.1016/j.marpetgeo.2014.07.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01056278v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264817214002281</els_id><sourcerecordid>1651410385</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-27f1b6e83af95ee472711f659ebab6bd54030bd9dc5c64d88ee90ccd0264c44f3</originalsourceid><addsrcrecordid>eNqNkc-O0zAQxiMEEmXhGfAFaVfahHHixA63UlgWVAQHOFuOPWldpXaw06LlxDvwKLwRT4KjrnqFk__oN_PNfF-WPadQUKDNy12xV2HEaYO-KIGyAngBwB5kCyp4lTPg1cNsAWXDckF5-Th7EuMOAHgLdJH9Xm1VUHrCYH-oyXpHlDPEB7uxjviejBj2qDo72Onuz89fow8-pivZYirxG3Q4vxIbt2oY_Pc8DWMdEq1C552aML4iN8HvifYBSdRqQDJ5Ur0hASOGo7eBGLtHF2fty4_WmER8OAQVo9XX5HNqF8lrFa27To2U03j1NHvUqyHis_vzIvt68_bL6jZff3r3frVc54o1YspL3tOuQVGpvq0RGS85pX1Tt9iprulMzaCCzrRG17phRgjEFrQ2s1Wasb66yK5OfdNqcgw2rXYnvbLydrmW8x9QqJuSiyNN7OWJHYP_dsA4yb2NGodBOfSHKGlTU0ahEvV_oFXbto3gLKH8hOpkewzYn8egIOf05U6e05dz-hK4TOmnyhf3Imo2vZ-ds_FcXgou6rqc516eOExGHi0GGbXF5LKxAfUkjbf_1PoLxePN0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639996874</pqid></control><display><type>article</type><title>Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Brigaud, Benjamin ; Vincent, Benoît ; Durlet, Christophe ; Deconinck, Jean-François ; Jobard, Emmanuel ; Pickard, Neil ; Yven, Béatrice ; Landrein, Philippe</creator><creatorcontrib>Brigaud, Benjamin ; Vincent, Benoît ; Durlet, Christophe ; Deconinck, Jean-François ; Jobard, Emmanuel ; Pickard, Neil ; Yven, Béatrice ; Landrein, Philippe</creatorcontrib><description>Nuclear magnetic resonance (NMR), stable isotope geochemistry of micro-sampled cores, NMR well-logs and 3D modeling are used to investigate the carbonate permeability-porosity heterogeneity along 230 m-thick limestones of the Paris Basin. Despite the global low porosity and permeability of the limestones, two aquifers units with porosity greater than 15% were identified. These two aquifers are very different in terms of pore through radii and NMR signal. The first one (A1: Aquifer 1) is a 7 m-thick mudstone unit, dominated by extended microporosity with pore throat radii of 0.25 μm to 0.3 μm. The second one (A2: Aquifer 2) is a 15 m-thick oolitic grainstone units showing macropores reaching 100 μm and pore throat radii of 32 μm. From core descriptions and wireline logs on 26 wells, a 3D static geological model is build. The fine tuning of permeability calculations from NMR logs realized along 12 of the wells, allows porosity and permeability heterogeneity to be distributed within a 3D model at the reservoir scale (area of about 2000 km2) which match the flow behavior illustrated by well tests. Associated with early meteoric calcite cements and poorly developed burial blocky calcite cements, the porous and permeable intervals may be predicted in two stratigraphic and diagenetic considerations. Firstly, the syn-sedimentary meteoric dissolution or neomorphism of the initial high magnesium calcite and aragonite particles or clasts into low magnesium calcite particles or cements prevented most mechanical and chemical compaction during the first steps of burial. Secondly, the regional stratigraphic architecture reveals the presence of local permeability barriers, which prevented Early Cretaceous lateral meteoric water circulation and the associated burial calcite cementation. •Carbonate permeability-porosity heterogeneity has been traced.•3D static geological model is built using Petrel®.•NMR logs allows porosity and permeability to be distributed within a 3D model.•Porous and permeable intervals may be predicted.</description><identifier>ISSN: 0264-8172</identifier><identifier>EISSN: 1873-4073</identifier><identifier>DOI: 10.1016/j.marpetgeo.2014.07.004</identifier><identifier>CODEN: MPEGD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aquifers ; Calcite ; Carbonate ; Cements ; Diagenesis ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrocarbons ; Magnesium ; Mathematical models ; Modeling ; Nuclear magnetic resonance ; Permeability ; Petrography ; Petrophysic ; Porosity ; Sciences of the Universe ; Sedimentary rocks ; Sedimentology ; Stratigraphy</subject><ispartof>Marine and petroleum geology, 2014-11, Vol.57, p.631-651</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-27f1b6e83af95ee472711f659ebab6bd54030bd9dc5c64d88ee90ccd0264c44f3</citedby><cites>FETCH-LOGICAL-a468t-27f1b6e83af95ee472711f659ebab6bd54030bd9dc5c64d88ee90ccd0264c44f3</cites><orcidid>0000-0001-6961-2177 ; 0000-0001-6957-6516 ; 0000-0003-0097-2523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpetgeo.2014.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28785521$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01056278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brigaud, Benjamin</creatorcontrib><creatorcontrib>Vincent, Benoît</creatorcontrib><creatorcontrib>Durlet, Christophe</creatorcontrib><creatorcontrib>Deconinck, Jean-François</creatorcontrib><creatorcontrib>Jobard, Emmanuel</creatorcontrib><creatorcontrib>Pickard, Neil</creatorcontrib><creatorcontrib>Yven, Béatrice</creatorcontrib><creatorcontrib>Landrein, Philippe</creatorcontrib><title>Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)</title><title>Marine and petroleum geology</title><description>Nuclear magnetic resonance (NMR), stable isotope geochemistry of micro-sampled cores, NMR well-logs and 3D modeling are used to investigate the carbonate permeability-porosity heterogeneity along 230 m-thick limestones of the Paris Basin. Despite the global low porosity and permeability of the limestones, two aquifers units with porosity greater than 15% were identified. These two aquifers are very different in terms of pore through radii and NMR signal. The first one (A1: Aquifer 1) is a 7 m-thick mudstone unit, dominated by extended microporosity with pore throat radii of 0.25 μm to 0.3 μm. The second one (A2: Aquifer 2) is a 15 m-thick oolitic grainstone units showing macropores reaching 100 μm and pore throat radii of 32 μm. From core descriptions and wireline logs on 26 wells, a 3D static geological model is build. The fine tuning of permeability calculations from NMR logs realized along 12 of the wells, allows porosity and permeability heterogeneity to be distributed within a 3D model at the reservoir scale (area of about 2000 km2) which match the flow behavior illustrated by well tests. Associated with early meteoric calcite cements and poorly developed burial blocky calcite cements, the porous and permeable intervals may be predicted in two stratigraphic and diagenetic considerations. Firstly, the syn-sedimentary meteoric dissolution or neomorphism of the initial high magnesium calcite and aragonite particles or clasts into low magnesium calcite particles or cements prevented most mechanical and chemical compaction during the first steps of burial. Secondly, the regional stratigraphic architecture reveals the presence of local permeability barriers, which prevented Early Cretaceous lateral meteoric water circulation and the associated burial calcite cementation. •Carbonate permeability-porosity heterogeneity has been traced.•3D static geological model is built using Petrel®.•NMR logs allows porosity and permeability to be distributed within a 3D model.•Porous and permeable intervals may be predicted.</description><subject>Aquifers</subject><subject>Calcite</subject><subject>Carbonate</subject><subject>Cements</subject><subject>Diagenesis</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Magnesium</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Nuclear magnetic resonance</subject><subject>Permeability</subject><subject>Petrography</subject><subject>Petrophysic</subject><subject>Porosity</subject><subject>Sciences of the Universe</subject><subject>Sedimentary rocks</subject><subject>Sedimentology</subject><subject>Stratigraphy</subject><issn>0264-8172</issn><issn>1873-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc-O0zAQxiMEEmXhGfAFaVfahHHixA63UlgWVAQHOFuOPWldpXaw06LlxDvwKLwRT4KjrnqFk__oN_PNfF-WPadQUKDNy12xV2HEaYO-KIGyAngBwB5kCyp4lTPg1cNsAWXDckF5-Th7EuMOAHgLdJH9Xm1VUHrCYH-oyXpHlDPEB7uxjviejBj2qDo72Onuz89fow8-pivZYirxG3Q4vxIbt2oY_Pc8DWMdEq1C552aML4iN8HvifYBSdRqQDJ5Ur0hASOGo7eBGLtHF2fty4_WmER8OAQVo9XX5HNqF8lrFa27To2U03j1NHvUqyHis_vzIvt68_bL6jZff3r3frVc54o1YspL3tOuQVGpvq0RGS85pX1Tt9iprulMzaCCzrRG17phRgjEFrQ2s1Wasb66yK5OfdNqcgw2rXYnvbLydrmW8x9QqJuSiyNN7OWJHYP_dsA4yb2NGodBOfSHKGlTU0ahEvV_oFXbto3gLKH8hOpkewzYn8egIOf05U6e05dz-hK4TOmnyhf3Imo2vZ-ds_FcXgou6rqc516eOExGHi0GGbXF5LKxAfUkjbf_1PoLxePN0g</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Brigaud, Benjamin</creator><creator>Vincent, Benoît</creator><creator>Durlet, Christophe</creator><creator>Deconinck, Jean-François</creator><creator>Jobard, Emmanuel</creator><creator>Pickard, Neil</creator><creator>Yven, Béatrice</creator><creator>Landrein, Philippe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6961-2177</orcidid><orcidid>https://orcid.org/0000-0001-6957-6516</orcidid><orcidid>https://orcid.org/0000-0003-0097-2523</orcidid></search><sort><creationdate>20141101</creationdate><title>Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)</title><author>Brigaud, Benjamin ; Vincent, Benoît ; Durlet, Christophe ; Deconinck, Jean-François ; Jobard, Emmanuel ; Pickard, Neil ; Yven, Béatrice ; Landrein, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-27f1b6e83af95ee472711f659ebab6bd54030bd9dc5c64d88ee90ccd0264c44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquifers</topic><topic>Calcite</topic><topic>Carbonate</topic><topic>Cements</topic><topic>Diagenesis</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Magnesium</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Nuclear magnetic resonance</topic><topic>Permeability</topic><topic>Petrography</topic><topic>Petrophysic</topic><topic>Porosity</topic><topic>Sciences of the Universe</topic><topic>Sedimentary rocks</topic><topic>Sedimentology</topic><topic>Stratigraphy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brigaud, Benjamin</creatorcontrib><creatorcontrib>Vincent, Benoît</creatorcontrib><creatorcontrib>Durlet, Christophe</creatorcontrib><creatorcontrib>Deconinck, Jean-François</creatorcontrib><creatorcontrib>Jobard, Emmanuel</creatorcontrib><creatorcontrib>Pickard, Neil</creatorcontrib><creatorcontrib>Yven, Béatrice</creatorcontrib><creatorcontrib>Landrein, Philippe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Marine and petroleum geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brigaud, Benjamin</au><au>Vincent, Benoît</au><au>Durlet, Christophe</au><au>Deconinck, Jean-François</au><au>Jobard, Emmanuel</au><au>Pickard, Neil</au><au>Yven, Béatrice</au><au>Landrein, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)</atitle><jtitle>Marine and petroleum geology</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>57</volume><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>0264-8172</issn><eissn>1873-4073</eissn><coden>MPEGD8</coden><abstract>Nuclear magnetic resonance (NMR), stable isotope geochemistry of micro-sampled cores, NMR well-logs and 3D modeling are used to investigate the carbonate permeability-porosity heterogeneity along 230 m-thick limestones of the Paris Basin. Despite the global low porosity and permeability of the limestones, two aquifers units with porosity greater than 15% were identified. These two aquifers are very different in terms of pore through radii and NMR signal. The first one (A1: Aquifer 1) is a 7 m-thick mudstone unit, dominated by extended microporosity with pore throat radii of 0.25 μm to 0.3 μm. The second one (A2: Aquifer 2) is a 15 m-thick oolitic grainstone units showing macropores reaching 100 μm and pore throat radii of 32 μm. From core descriptions and wireline logs on 26 wells, a 3D static geological model is build. The fine tuning of permeability calculations from NMR logs realized along 12 of the wells, allows porosity and permeability heterogeneity to be distributed within a 3D model at the reservoir scale (area of about 2000 km2) which match the flow behavior illustrated by well tests. Associated with early meteoric calcite cements and poorly developed burial blocky calcite cements, the porous and permeable intervals may be predicted in two stratigraphic and diagenetic considerations. Firstly, the syn-sedimentary meteoric dissolution or neomorphism of the initial high magnesium calcite and aragonite particles or clasts into low magnesium calcite particles or cements prevented most mechanical and chemical compaction during the first steps of burial. Secondly, the regional stratigraphic architecture reveals the presence of local permeability barriers, which prevented Early Cretaceous lateral meteoric water circulation and the associated burial calcite cementation. •Carbonate permeability-porosity heterogeneity has been traced.•3D static geological model is built using Petrel®.•NMR logs allows porosity and permeability to be distributed within a 3D model.•Porous and permeable intervals may be predicted.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpetgeo.2014.07.004</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6961-2177</orcidid><orcidid>https://orcid.org/0000-0001-6957-6516</orcidid><orcidid>https://orcid.org/0000-0003-0097-2523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-8172
ispartof Marine and petroleum geology, 2014-11, Vol.57, p.631-651
issn 0264-8172
1873-4073
language eng
recordid cdi_hal_primary_oai_HAL_hal_01056278v1
source ScienceDirect Journals (5 years ago - present)
subjects Aquifers
Calcite
Carbonate
Cements
Diagenesis
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Hydrocarbons
Magnesium
Mathematical models
Modeling
Nuclear magnetic resonance
Permeability
Petrography
Petrophysic
Porosity
Sciences of the Universe
Sedimentary rocks
Sedimentology
Stratigraphy
title Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20origin%20of%20permeability%E2%80%93porosity%20heterogeneity%20in%20shallow-marine%20carbonates:%20From%20core%20scale%20to%203D%20reservoir%20dimension%20(Middle%20Jurassic,%20Paris%20Basin,%20France)&rft.jtitle=Marine%20and%20petroleum%20geology&rft.au=Brigaud,%20Benjamin&rft.date=2014-11-01&rft.volume=57&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=0264-8172&rft.eissn=1873-4073&rft.coden=MPEGD8&rft_id=info:doi/10.1016/j.marpetgeo.2014.07.004&rft_dat=%3Cproquest_hal_p%3E1651410385%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639996874&rft_id=info:pmid/&rft_els_id=S0264817214002281&rfr_iscdi=true