Revisiting the Fisher vector for fine-grained classification

•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2014-11, Vol.49, p.92-98
Hauptverfasser: Gosselin, Philippe-Henri, Murray, Naila, Jégou, Hervé, Perronnin, Florent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 92
container_title Pattern recognition letters
container_volume 49
creator Gosselin, Philippe-Henri
Murray, Naila
Jégou, Hervé
Perronnin, Florent
description •Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.
doi_str_mv 10.1016/j.patrec.2014.06.011
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01056223v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865514002013</els_id><sourcerecordid>S0167865514002013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYdcPSTOfmYLIpRiVSgIoudls51tt9Sk7C4B_70JEY8ehheG5xmYl5BbChUFqu4P1cnmiK5iQEUFqgJKz8iM6pqVNRfinMwGrC61kvKSXKV0AADFF3pGHt6xDynk0O6KvMdiHdIeY9Gjy10s_DihxXIX7RDbwh1tSsEHZ3Po2mty4e0x4c1vzsnn-ulj9VJu3p5fV8tN6YRkufReUSa81kosQMjGNVJiLT3VXNbKQy20AI-OSisRPReN5R5ZY6nVTknL5-Ruuru3R3OK4cvGb9PZYF6WGzPugIJUjPGeDqyYWBe7lCL6P4GCGdsyBzO1Zca2DKjBHrXHScPhjz5gNMkFbB1uw4Bms-3C_wd-AF-SdIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Fisher vector for fine-grained classification</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</creator><creatorcontrib>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</creatorcontrib><description>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2014.06.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Challenge ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; Fine-grain classification</subject><ispartof>Pattern recognition letters, 2014-11, Vol.49, p.92-98</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</citedby><cites>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01056223$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><creatorcontrib>Murray, Naila</creatorcontrib><creatorcontrib>Jégou, Hervé</creatorcontrib><creatorcontrib>Perronnin, Florent</creatorcontrib><title>Revisiting the Fisher vector for fine-grained classification</title><title>Pattern recognition letters</title><description>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</description><subject>Challenge</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Fine-grain classification</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYdcPSTOfmYLIpRiVSgIoudls51tt9Sk7C4B_70JEY8ehheG5xmYl5BbChUFqu4P1cnmiK5iQEUFqgJKz8iM6pqVNRfinMwGrC61kvKSXKV0AADFF3pGHt6xDynk0O6KvMdiHdIeY9Gjy10s_DihxXIX7RDbwh1tSsEHZ3Po2mty4e0x4c1vzsnn-ulj9VJu3p5fV8tN6YRkufReUSa81kosQMjGNVJiLT3VXNbKQy20AI-OSisRPReN5R5ZY6nVTknL5-Ruuru3R3OK4cvGb9PZYF6WGzPugIJUjPGeDqyYWBe7lCL6P4GCGdsyBzO1Zca2DKjBHrXHScPhjz5gNMkFbB1uw4Bms-3C_wd-AF-SdIQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Gosselin, Philippe-Henri</creator><creator>Murray, Naila</creator><creator>Jégou, Hervé</creator><creator>Perronnin, Florent</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20141101</creationdate><title>Revisiting the Fisher vector for fine-grained classification</title><author>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Challenge</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Fine-grain classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><creatorcontrib>Murray, Naila</creatorcontrib><creatorcontrib>Jégou, Hervé</creatorcontrib><creatorcontrib>Perronnin, Florent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosselin, Philippe-Henri</au><au>Murray, Naila</au><au>Jégou, Hervé</au><au>Perronnin, Florent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Fisher vector for fine-grained classification</atitle><jtitle>Pattern recognition letters</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>49</volume><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2014.06.011</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2014-11, Vol.49, p.92-98
issn 0167-8655
1872-7344
language eng
recordid cdi_hal_primary_oai_HAL_hal_01056223v1
source ScienceDirect Journals (5 years ago - present)
subjects Challenge
Computer Science
Computer vision
Computer Vision and Pattern Recognition
Fine-grain classification
title Revisiting the Fisher vector for fine-grained classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Fisher%20vector%20for%20fine-grained%20classification&rft.jtitle=Pattern%20recognition%20letters&rft.au=Gosselin,%20Philippe-Henri&rft.date=2014-11-01&rft.volume=49&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2014.06.011&rft_dat=%3Celsevier_hal_p%3ES0167865514002013%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865514002013&rfr_iscdi=true