Revisiting the Fisher vector for fine-grained classification
•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning. This paper describes the joint submi...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2014-11, Vol.49, p.92-98 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | Pattern recognition letters |
container_volume | 49 |
creator | Gosselin, Philippe-Henri Murray, Naila Jégou, Hervé Perronnin, Florent |
description | •Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning.
This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains. |
doi_str_mv | 10.1016/j.patrec.2014.06.011 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01056223v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865514002013</els_id><sourcerecordid>S0167865514002013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYdcPSTOfmYLIpRiVSgIoudls51tt9Sk7C4B_70JEY8ehheG5xmYl5BbChUFqu4P1cnmiK5iQEUFqgJKz8iM6pqVNRfinMwGrC61kvKSXKV0AADFF3pGHt6xDynk0O6KvMdiHdIeY9Gjy10s_DihxXIX7RDbwh1tSsEHZ3Po2mty4e0x4c1vzsnn-ulj9VJu3p5fV8tN6YRkufReUSa81kosQMjGNVJiLT3VXNbKQy20AI-OSisRPReN5R5ZY6nVTknL5-Ruuru3R3OK4cvGb9PZYF6WGzPugIJUjPGeDqyYWBe7lCL6P4GCGdsyBzO1Zca2DKjBHrXHScPhjz5gNMkFbB1uw4Bms-3C_wd-AF-SdIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisiting the Fisher vector for fine-grained classification</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</creator><creatorcontrib>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</creatorcontrib><description>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning.
This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2014.06.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Challenge ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; Fine-grain classification</subject><ispartof>Pattern recognition letters, 2014-11, Vol.49, p.92-98</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</citedby><cites>FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01056223$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><creatorcontrib>Murray, Naila</creatorcontrib><creatorcontrib>Jégou, Hervé</creatorcontrib><creatorcontrib>Perronnin, Florent</creatorcontrib><title>Revisiting the Fisher vector for fine-grained classification</title><title>Pattern recognition letters</title><description>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning.
This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</description><subject>Challenge</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Fine-grain classification</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYdcPSTOfmYLIpRiVSgIoudls51tt9Sk7C4B_70JEY8ehheG5xmYl5BbChUFqu4P1cnmiK5iQEUFqgJKz8iM6pqVNRfinMwGrC61kvKSXKV0AADFF3pGHt6xDynk0O6KvMdiHdIeY9Gjy10s_DihxXIX7RDbwh1tSsEHZ3Po2mty4e0x4c1vzsnn-ulj9VJu3p5fV8tN6YRkufReUSa81kosQMjGNVJiLT3VXNbKQy20AI-OSisRPReN5R5ZY6nVTknL5-Ruuru3R3OK4cvGb9PZYF6WGzPugIJUjPGeDqyYWBe7lCL6P4GCGdsyBzO1Zca2DKjBHrXHScPhjz5gNMkFbB1uw4Bms-3C_wd-AF-SdIQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Gosselin, Philippe-Henri</creator><creator>Murray, Naila</creator><creator>Jégou, Hervé</creator><creator>Perronnin, Florent</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20141101</creationdate><title>Revisiting the Fisher vector for fine-grained classification</title><author>Gosselin, Philippe-Henri ; Murray, Naila ; Jégou, Hervé ; Perronnin, Florent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ff6124f88649045bcb55e75f183576f074840fec15a5eef34ba3fe2ba1a8c65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Challenge</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Fine-grain classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosselin, Philippe-Henri</creatorcontrib><creatorcontrib>Murray, Naila</creatorcontrib><creatorcontrib>Jégou, Hervé</creatorcontrib><creatorcontrib>Perronnin, Florent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosselin, Philippe-Henri</au><au>Murray, Naila</au><au>Jégou, Hervé</au><au>Perronnin, Florent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Fisher vector for fine-grained classification</atitle><jtitle>Pattern recognition letters</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>49</volume><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Wining method of Fine-grain image classification challenge 2013.•Late combination of two indexing and classification strategies.•Good practices for fine grain image classification.•Key features: descriptors filtering, spatial coordinates coding, active learning.
This paper describes the joint submission of Inria and Xerox to their joint participation to the FGCOMP’2013 challenge. Although the proposed system follows most of the standard Fisher classification pipeline, we describe a few key features and good practices that significantly improve the accuracy when specifically considering fine-grain classification tasks. In particular, we consider the late fusion of two systems both based on Fisher vectors, but for which we choose drastically design choices that make them very complementary. Moreover, we propose a simple yet effective filtering strategy, which significantly boosts the performance for several class domains.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2014.06.011</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2014-11, Vol.49, p.92-98 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01056223v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Challenge Computer Science Computer vision Computer Vision and Pattern Recognition Fine-grain classification |
title | Revisiting the Fisher vector for fine-grained classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Fisher%20vector%20for%20fine-grained%20classification&rft.jtitle=Pattern%20recognition%20letters&rft.au=Gosselin,%20Philippe-Henri&rft.date=2014-11-01&rft.volume=49&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2014.06.011&rft_dat=%3Celsevier_hal_p%3ES0167865514002013%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865514002013&rfr_iscdi=true |