Integrating Profiling Into MDE Compilers

Scientific computation requires more and more performance in its algorithms. New, massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of software engineering & applications (Chennai, India) India), 2014-07, Vol.5 (4), p.1-20
Hauptverfasser: Aranega, Vincent, O. Rodrigues, A. Wendell, Etien, Anne, Guyomarch, Fréderic, Dekeyser, Jean-Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 4
container_start_page 1
container_title International journal of software engineering & applications (Chennai, India)
container_volume 5
creator Aranega, Vincent
O. Rodrigues, A. Wendell
Etien, Anne
Guyomarch, Fréderic
Dekeyser, Jean-Luc
description Scientific computation requires more and more performance in its algorithms. New, massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based on source-to-source intends to provide a low learning curve for parallel programming and take advantage of architecture features to create optimized applications, programming remains difficult for neophytes. This work aims at improving performance by returning to the high-level models, specific execution data from a profiling tool enhanced by smart advices computed by an analysis engine. To keep the link between execution and model, the process is based on a traceability mechanism. This work allows keeping coherence between model and code without forgetting to harness the power of parallel architectures. To illustrate and clarify key points of this approach, the authors provide an experimental example in GPUs context. The example uses a transformation chain from UML-MARTE models to OpenCL code.
doi_str_mv 10.5121/ijsea.2014.5401
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01053031v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671597378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1481-9c256416b28d1a678c3067e566c177664db900d4a6dc283ced5533b1a0c6b9e23</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiURZu2WJi4H3-t0lQRQSjC503XQ6BWsGii2Y-O9lwLi6Nzcnd3EIuUMYCaQ4jp8luBEF5CPBAS9ID4wSlQHUl6cuK0opXpN-KbEGEBolN7JHhovtPqyz28ftevCa0yq2XTuuafD8MBtM02YX25DLLblaubaE_l_ekPfH2dt0Xi1fnhbTybLyyDVWxlMhOcqa6gadVNozkCoIKT0qJSVvagPQcCcbTzXzoRGCsRodeFmbQNkNuT__frjW7nLcuPxjk4t2PlnabgMEwYDhNx7Z4Znd5fR1CGVvN7H40LZuG9KhWJQKhVFM6SM6PqM-p1JyWP1_I9hOoT0ptJ1C2ylkv59dYX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671597378</pqid></control><display><type>article</type><title>Integrating Profiling Into MDE Compilers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aranega, Vincent ; O. Rodrigues, A. Wendell ; Etien, Anne ; Guyomarch, Fréderic ; Dekeyser, Jean-Luc</creator><creatorcontrib>Aranega, Vincent ; O. Rodrigues, A. Wendell ; Etien, Anne ; Guyomarch, Fréderic ; Dekeyser, Jean-Luc</creatorcontrib><description>Scientific computation requires more and more performance in its algorithms. New, massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based on source-to-source intends to provide a low learning curve for parallel programming and take advantage of architecture features to create optimized applications, programming remains difficult for neophytes. This work aims at improving performance by returning to the high-level models, specific execution data from a profiling tool enhanced by smart advices computed by an analysis engine. To keep the link between execution and model, the process is based on a traceability mechanism. This work allows keeping coherence between model and code without forgetting to harness the power of parallel architectures. To illustrate and clarify key points of this approach, the authors provide an experimental example in GPUs context. The example uses a transformation chain from UML-MARTE models to OpenCL code.</description><identifier>ISSN: 0976-2221</identifier><identifier>EISSN: 0975-9018</identifier><identifier>DOI: 10.5121/ijsea.2014.5401</identifier><language>eng</language><publisher>AIRCC Publishing Corporation</publisher><subject>Algorithms ; Chains ; Computation ; Computer Science ; Distributed, Parallel, and Cluster Computing ; Mathematical models ; Parallel programming ; Profiling ; Transformations</subject><ispartof>International journal of software engineering &amp; applications (Chennai, India), 2014-07, Vol.5 (4), p.1-20</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6256-2549 ; 0000-0003-3034-873X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01053031$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aranega, Vincent</creatorcontrib><creatorcontrib>O. Rodrigues, A. Wendell</creatorcontrib><creatorcontrib>Etien, Anne</creatorcontrib><creatorcontrib>Guyomarch, Fréderic</creatorcontrib><creatorcontrib>Dekeyser, Jean-Luc</creatorcontrib><title>Integrating Profiling Into MDE Compilers</title><title>International journal of software engineering &amp; applications (Chennai, India)</title><description>Scientific computation requires more and more performance in its algorithms. New, massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based on source-to-source intends to provide a low learning curve for parallel programming and take advantage of architecture features to create optimized applications, programming remains difficult for neophytes. This work aims at improving performance by returning to the high-level models, specific execution data from a profiling tool enhanced by smart advices computed by an analysis engine. To keep the link between execution and model, the process is based on a traceability mechanism. This work allows keeping coherence between model and code without forgetting to harness the power of parallel architectures. To illustrate and clarify key points of this approach, the authors provide an experimental example in GPUs context. The example uses a transformation chain from UML-MARTE models to OpenCL code.</description><subject>Algorithms</subject><subject>Chains</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Mathematical models</subject><subject>Parallel programming</subject><subject>Profiling</subject><subject>Transformations</subject><issn>0976-2221</issn><issn>0975-9018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEURRujiURZu2WJi4H3-t0lQRQSjC503XQ6BWsGii2Y-O9lwLi6Nzcnd3EIuUMYCaQ4jp8luBEF5CPBAS9ID4wSlQHUl6cuK0opXpN-KbEGEBolN7JHhovtPqyz28ftevCa0yq2XTuuafD8MBtM02YX25DLLblaubaE_l_ekPfH2dt0Xi1fnhbTybLyyDVWxlMhOcqa6gadVNozkCoIKT0qJSVvagPQcCcbTzXzoRGCsRodeFmbQNkNuT__frjW7nLcuPxjk4t2PlnabgMEwYDhNx7Z4Znd5fR1CGVvN7H40LZuG9KhWJQKhVFM6SM6PqM-p1JyWP1_I9hOoT0ptJ1C2ylkv59dYX0</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Aranega, Vincent</creator><creator>O. Rodrigues, A. Wendell</creator><creator>Etien, Anne</creator><creator>Guyomarch, Fréderic</creator><creator>Dekeyser, Jean-Luc</creator><general>AIRCC Publishing Corporation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6256-2549</orcidid><orcidid>https://orcid.org/0000-0003-3034-873X</orcidid></search><sort><creationdate>20140731</creationdate><title>Integrating Profiling Into MDE Compilers</title><author>Aranega, Vincent ; O. Rodrigues, A. Wendell ; Etien, Anne ; Guyomarch, Fréderic ; Dekeyser, Jean-Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1481-9c256416b28d1a678c3067e566c177664db900d4a6dc283ced5533b1a0c6b9e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Chains</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Mathematical models</topic><topic>Parallel programming</topic><topic>Profiling</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Aranega, Vincent</creatorcontrib><creatorcontrib>O. Rodrigues, A. Wendell</creatorcontrib><creatorcontrib>Etien, Anne</creatorcontrib><creatorcontrib>Guyomarch, Fréderic</creatorcontrib><creatorcontrib>Dekeyser, Jean-Luc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of software engineering &amp; applications (Chennai, India)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranega, Vincent</au><au>O. Rodrigues, A. Wendell</au><au>Etien, Anne</au><au>Guyomarch, Fréderic</au><au>Dekeyser, Jean-Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Profiling Into MDE Compilers</atitle><jtitle>International journal of software engineering &amp; applications (Chennai, India)</jtitle><date>2014-07-31</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0976-2221</issn><eissn>0975-9018</eissn><abstract>Scientific computation requires more and more performance in its algorithms. New, massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based on source-to-source intends to provide a low learning curve for parallel programming and take advantage of architecture features to create optimized applications, programming remains difficult for neophytes. This work aims at improving performance by returning to the high-level models, specific execution data from a profiling tool enhanced by smart advices computed by an analysis engine. To keep the link between execution and model, the process is based on a traceability mechanism. This work allows keeping coherence between model and code without forgetting to harness the power of parallel architectures. To illustrate and clarify key points of this approach, the authors provide an experimental example in GPUs context. The example uses a transformation chain from UML-MARTE models to OpenCL code.</abstract><pub>AIRCC Publishing Corporation</pub><doi>10.5121/ijsea.2014.5401</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6256-2549</orcidid><orcidid>https://orcid.org/0000-0003-3034-873X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-2221
ispartof International journal of software engineering & applications (Chennai, India), 2014-07, Vol.5 (4), p.1-20
issn 0976-2221
0975-9018
language eng
recordid cdi_hal_primary_oai_HAL_hal_01053031v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Chains
Computation
Computer Science
Distributed, Parallel, and Cluster Computing
Mathematical models
Parallel programming
Profiling
Transformations
title Integrating Profiling Into MDE Compilers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Profiling%20Into%20MDE%20Compilers&rft.jtitle=International%20journal%20of%20software%20engineering%20&%20applications%20(Chennai,%20India)&rft.au=Aranega,%20Vincent&rft.date=2014-07-31&rft.volume=5&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0976-2221&rft.eissn=0975-9018&rft_id=info:doi/10.5121/ijsea.2014.5401&rft_dat=%3Cproquest_hal_p%3E1671597378%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671597378&rft_id=info:pmid/&rfr_iscdi=true