Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems
This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints...
Gespeichert in:
Veröffentlicht in: | International journal on document analysis and recognition 2010, Vol.13 (3), p.187-207 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 3 |
container_start_page | 187 |
container_title | International journal on document analysis and recognition |
container_volume | 13 |
creator | Delalandre, Mathieu Valveny, Ernest Pridmore, Tony Karatzas, Dimosthenis |
description | This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results. |
doi_str_mv | 10.1007/s10032-010-0120-x |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01022594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01022594v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4soOKd_gLdeFDxU86NNm-MYugkDL3oOafqydbTJSLKx_femVoYnD8kL730-D_JNknuMnjFC5YuPNyUZwigegrLjRTLBOaUZqUhxeX5Tep3ceL9FCJesrCYJLMCAk6G1JrU69ScTNhBalTZW7XswwafaunQHLpZeGgUpHGS3_2P0te1SB8quTfvTfUz9zobQmnWc-gC9v02utOw83P3WafL19vo5X2arj8X7fLbKFOVFyIhSJWikCqZrykpU5qohildMY5kjShGpGNQKgDBeI8YLThosdVHxJucqAtPkady7kZ3YubaX7iSsbMVythJDL-ZDSMHzA44sHlnlrPcO9FnASAyZijHTwRFDpuIYnYfR2UmvZKddDKT1Z5FQQnLCqsiRkfNxZNbgxNbunYlf_2f5NyptiDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems</title><source>SpringerNature Journals</source><creator>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</creator><creatorcontrib>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</creatorcontrib><description>This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</description><identifier>ISSN: 1433-2833</identifier><identifier>EISSN: 1433-2825</identifier><identifier>DOI: 10.1007/s10032-010-0120-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Computer Vision and Pattern Recognition ; Document and Text Processing ; Exact sciences and technology ; Image Processing ; Image Processing and Computer Vision ; Original Paper ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>International journal on document analysis and recognition, 2010, Vol.13 (3), p.187-207</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</citedby><cites>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10032-010-0120-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10032-010-0120-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23224268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01022594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Valveny, Ernest</creatorcontrib><creatorcontrib>Pridmore, Tony</creatorcontrib><creatorcontrib>Karatzas, Dimosthenis</creatorcontrib><title>Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems</title><title>International journal on document analysis and recognition</title><addtitle>IJDAR</addtitle><description>This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Document and Text Processing</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Image Processing and Computer Vision</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>1433-2833</issn><issn>1433-2825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4soOKd_gLdeFDxU86NNm-MYugkDL3oOafqydbTJSLKx_femVoYnD8kL730-D_JNknuMnjFC5YuPNyUZwigegrLjRTLBOaUZqUhxeX5Tep3ceL9FCJesrCYJLMCAk6G1JrU69ScTNhBalTZW7XswwafaunQHLpZeGgUpHGS3_2P0te1SB8quTfvTfUz9zobQmnWc-gC9v02utOw83P3WafL19vo5X2arj8X7fLbKFOVFyIhSJWikCqZrykpU5qohildMY5kjShGpGNQKgDBeI8YLThosdVHxJucqAtPkady7kZ3YubaX7iSsbMVythJDL-ZDSMHzA44sHlnlrPcO9FnASAyZijHTwRFDpuIYnYfR2UmvZKddDKT1Z5FQQnLCqsiRkfNxZNbgxNbunYlf_2f5NyptiDY</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Delalandre, Mathieu</creator><creator>Valveny, Ernest</creator><creator>Pridmore, Tony</creator><creator>Karatzas, Dimosthenis</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2010</creationdate><title>Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems</title><author>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Document and Text Processing</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Image Processing and Computer Vision</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Valveny, Ernest</creatorcontrib><creatorcontrib>Pridmore, Tony</creatorcontrib><creatorcontrib>Karatzas, Dimosthenis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal on document analysis and recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delalandre, Mathieu</au><au>Valveny, Ernest</au><au>Pridmore, Tony</au><au>Karatzas, Dimosthenis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems</atitle><jtitle>International journal on document analysis and recognition</jtitle><stitle>IJDAR</stitle><date>2010</date><risdate>2010</risdate><volume>13</volume><issue>3</issue><spage>187</spage><epage>207</epage><pages>187-207</pages><issn>1433-2833</issn><eissn>1433-2825</eissn><abstract>This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10032-010-0120-x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-2833 |
ispartof | International journal on document analysis and recognition, 2010, Vol.13 (3), p.187-207 |
issn | 1433-2833 1433-2825 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01022594v1 |
source | SpringerNature Journals |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Computer systems and distributed systems. User interface Computer Vision and Pattern Recognition Document and Text Processing Exact sciences and technology Image Processing Image Processing and Computer Vision Original Paper Pattern Recognition Pattern recognition. Digital image processing. Computational geometry Software |
title | Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20synthetic%20documents%20for%20performance%20evaluation%20of%20symbol%20recognition%20&%20spotting%20systems&rft.jtitle=International%20journal%20on%20document%20analysis%20and%20recognition&rft.au=Delalandre,%20Mathieu&rft.date=2010&rft.volume=13&rft.issue=3&rft.spage=187&rft.epage=207&rft.pages=187-207&rft.issn=1433-2833&rft.eissn=1433-2825&rft_id=info:doi/10.1007/s10032-010-0120-x&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01022594v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |