Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems

This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on document analysis and recognition 2010, Vol.13 (3), p.187-207
Hauptverfasser: Delalandre, Mathieu, Valveny, Ernest, Pridmore, Tony, Karatzas, Dimosthenis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 3
container_start_page 187
container_title International journal on document analysis and recognition
container_volume 13
creator Delalandre, Mathieu
Valveny, Ernest
Pridmore, Tony
Karatzas, Dimosthenis
description This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.
doi_str_mv 10.1007/s10032-010-0120-x
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01022594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01022594v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4soOKd_gLdeFDxU86NNm-MYugkDL3oOafqydbTJSLKx_femVoYnD8kL730-D_JNknuMnjFC5YuPNyUZwigegrLjRTLBOaUZqUhxeX5Tep3ceL9FCJesrCYJLMCAk6G1JrU69ScTNhBalTZW7XswwafaunQHLpZeGgUpHGS3_2P0te1SB8quTfvTfUz9zobQmnWc-gC9v02utOw83P3WafL19vo5X2arj8X7fLbKFOVFyIhSJWikCqZrykpU5qohildMY5kjShGpGNQKgDBeI8YLThosdVHxJucqAtPkady7kZ3YubaX7iSsbMVythJDL-ZDSMHzA44sHlnlrPcO9FnASAyZijHTwRFDpuIYnYfR2UmvZKddDKT1Z5FQQnLCqsiRkfNxZNbgxNbunYlf_2f5NyptiDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of synthetic documents for performance evaluation of symbol recognition &amp; spotting systems</title><source>SpringerNature Journals</source><creator>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</creator><creatorcontrib>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</creatorcontrib><description>This paper deals with the topic of performance evaluation of symbol recognition &amp; spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</description><identifier>ISSN: 1433-2833</identifier><identifier>EISSN: 1433-2825</identifier><identifier>DOI: 10.1007/s10032-010-0120-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Computer Vision and Pattern Recognition ; Document and Text Processing ; Exact sciences and technology ; Image Processing ; Image Processing and Computer Vision ; Original Paper ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>International journal on document analysis and recognition, 2010, Vol.13 (3), p.187-207</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</citedby><cites>FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10032-010-0120-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10032-010-0120-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23224268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01022594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Valveny, Ernest</creatorcontrib><creatorcontrib>Pridmore, Tony</creatorcontrib><creatorcontrib>Karatzas, Dimosthenis</creatorcontrib><title>Generation of synthetic documents for performance evaluation of symbol recognition &amp; spotting systems</title><title>International journal on document analysis and recognition</title><addtitle>IJDAR</addtitle><description>This paper deals with the topic of performance evaluation of symbol recognition &amp; spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Document and Text Processing</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Image Processing and Computer Vision</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>1433-2833</issn><issn>1433-2825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4soOKd_gLdeFDxU86NNm-MYugkDL3oOafqydbTJSLKx_femVoYnD8kL730-D_JNknuMnjFC5YuPNyUZwigegrLjRTLBOaUZqUhxeX5Tep3ceL9FCJesrCYJLMCAk6G1JrU69ScTNhBalTZW7XswwafaunQHLpZeGgUpHGS3_2P0te1SB8quTfvTfUz9zobQmnWc-gC9v02utOw83P3WafL19vo5X2arj8X7fLbKFOVFyIhSJWikCqZrykpU5qohildMY5kjShGpGNQKgDBeI8YLThosdVHxJucqAtPkady7kZ3YubaX7iSsbMVythJDL-ZDSMHzA44sHlnlrPcO9FnASAyZijHTwRFDpuIYnYfR2UmvZKddDKT1Z5FQQnLCqsiRkfNxZNbgxNbunYlf_2f5NyptiDY</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Delalandre, Mathieu</creator><creator>Valveny, Ernest</creator><creator>Pridmore, Tony</creator><creator>Karatzas, Dimosthenis</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2010</creationdate><title>Generation of synthetic documents for performance evaluation of symbol recognition &amp; spotting systems</title><author>Delalandre, Mathieu ; Valveny, Ernest ; Pridmore, Tony ; Karatzas, Dimosthenis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2cc7ef0c56fb367074cd2c986f1a40330286ebcee269b069592d1af589d49c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Document and Text Processing</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Image Processing and Computer Vision</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Valveny, Ernest</creatorcontrib><creatorcontrib>Pridmore, Tony</creatorcontrib><creatorcontrib>Karatzas, Dimosthenis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal on document analysis and recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delalandre, Mathieu</au><au>Valveny, Ernest</au><au>Pridmore, Tony</au><au>Karatzas, Dimosthenis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of synthetic documents for performance evaluation of symbol recognition &amp; spotting systems</atitle><jtitle>International journal on document analysis and recognition</jtitle><stitle>IJDAR</stitle><date>2010</date><risdate>2010</risdate><volume>13</volume><issue>3</issue><spage>187</spage><epage>207</epage><pages>187-207</pages><issn>1433-2833</issn><eissn>1433-2825</eissn><abstract>This paper deals with the topic of performance evaluation of symbol recognition &amp; spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10032-010-0120-x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-2833
ispartof International journal on document analysis and recognition, 2010, Vol.13 (3), p.187-207
issn 1433-2833
1433-2825
language eng
recordid cdi_hal_primary_oai_HAL_hal_01022594v1
source SpringerNature Journals
subjects Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Computer Vision and Pattern Recognition
Document and Text Processing
Exact sciences and technology
Image Processing
Image Processing and Computer Vision
Original Paper
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
Software
title Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20synthetic%20documents%20for%20performance%20evaluation%20of%20symbol%20recognition%20&%20spotting%20systems&rft.jtitle=International%20journal%20on%20document%20analysis%20and%20recognition&rft.au=Delalandre,%20Mathieu&rft.date=2010&rft.volume=13&rft.issue=3&rft.spage=187&rft.epage=207&rft.pages=187-207&rft.issn=1433-2833&rft.eissn=1433-2825&rft_id=info:doi/10.1007/s10032-010-0120-x&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01022594v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true