Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics
The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-08, Vol.45 (15), p.6584-6591 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6591 |
---|---|
container_issue | 15 |
container_start_page | 6584 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Berge, Philippe Ratel, Jérémy Fournier, Agnès Jondreville, Catherine Feidt, Cyril Roudaut, Brigitte Le Bizec, Bruno Engel, Erwan |
description | The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively. |
doi_str_mv | 10.1021/es200747h |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01019411v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889178792</sourcerecordid><originalsourceid>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</originalsourceid><addsrcrecordid>eNqN0k9rFDEUAPBBFLtWD34BCYIUD6N5yWQmObbbaoUVRVvpbchkXmxqdrImM8V68qObpeuu6EFPgeT3_oVXFI-BvgDK4CUmRmlTNZd3ihkIRkshBdwtZpQCLxWvL_aKByldUUoZp_J-scegqRRUYlb8OE9IgiWfgtej80jmYbkK09CTtzjqLnhnyEf3edDjFDERN5D3YfJjvCELd42RjIEcafOlPIvaIDl2OSi_nXxbhZQD1s8f9Mr1_mab7zv25AKH0LkwOpMeFves9gkfbc794vzVydn8tFy8e_1mfrgoteBiLPtGaA4cma6U1h2o2jBRozU9mJpbjdaCVVYq6DhVyjTYN9RKRFDM9l3P94vnt3kvtW9X0S1zn23Qrj09XLTrOwoUVAVwDdke3NpVDF8nTGO7dMmg93rAMKVWgaQ1rbn8LymoZOqfUubWG9koluXTP-RVmOKQPyejCiopGN-NY2JIKaLdzgS0XS9Fu12KbJ9sEk7dEvut_LUFGTzbAJ2M9jbqwbi0cxXPheVvTpu0a-rvgj8B0iHKvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884148523</pqid></control><display><type>article</type><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</creator><creatorcontrib>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</creatorcontrib><description>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es200747h</identifier><identifier>PMID: 21749145</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; Autoecology ; Biological and medical sciences ; Chickens - metabolism ; Chromatography ; Coccidiostats - metabolism ; Diet ; Ecotoxicology and Human Environmental Health ; Ecotoxicology, biological effects of pollution ; Environmental Exposure - analysis ; Food and Nutrition ; Food engineering ; Fundamental and applied biological sciences. Psychology ; General aspects ; Halogenated Diphenyl Ethers - metabolism ; Life Sciences ; Liver ; Liver - metabolism ; Mass spectrometry ; Metabolism ; Metabolome ; PCB ; Polybrominated diphenyl ethers ; Polychlorinated biphenyls ; Polychlorinated Biphenyls - metabolism ; Polychlorinated Dibenzodioxins - analogs & derivatives ; Polychlorinated Dibenzodioxins - metabolism ; Polycyclic Aromatic Hydrocarbons - metabolism ; Poultry ; Poultry - metabolism ; Scientific imaging ; Tissues ; Volatilization ; Xenobiotics - metabolism</subject><ispartof>Environmental science & technology, 2011-08, Vol.45 (15), p.6584-6591</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</citedby><cites>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</cites><orcidid>0000-0001-8149-9314 ; 0000-0002-0600-5895 ; 0000-0003-3828-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es200747h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es200747h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24388485$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21749145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01019411$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berge, Philippe</creatorcontrib><creatorcontrib>Ratel, Jérémy</creatorcontrib><creatorcontrib>Fournier, Agnès</creatorcontrib><creatorcontrib>Jondreville, Catherine</creatorcontrib><creatorcontrib>Feidt, Cyril</creatorcontrib><creatorcontrib>Roudaut, Brigitte</creatorcontrib><creatorcontrib>Le Bizec, Bruno</creatorcontrib><creatorcontrib>Engel, Erwan</creatorcontrib><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Chickens - metabolism</subject><subject>Chromatography</subject><subject>Coccidiostats - metabolism</subject><subject>Diet</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environmental Exposure - analysis</subject><subject>Food and Nutrition</subject><subject>Food engineering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Halogenated Diphenyl Ethers - metabolism</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>PCB</subject><subject>Polybrominated diphenyl ethers</subject><subject>Polychlorinated biphenyls</subject><subject>Polychlorinated Biphenyls - metabolism</subject><subject>Polychlorinated Dibenzodioxins - analogs & derivatives</subject><subject>Polychlorinated Dibenzodioxins - metabolism</subject><subject>Polycyclic Aromatic Hydrocarbons - metabolism</subject><subject>Poultry</subject><subject>Poultry - metabolism</subject><subject>Scientific imaging</subject><subject>Tissues</subject><subject>Volatilization</subject><subject>Xenobiotics - metabolism</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0k9rFDEUAPBBFLtWD34BCYIUD6N5yWQmObbbaoUVRVvpbchkXmxqdrImM8V68qObpeuu6EFPgeT3_oVXFI-BvgDK4CUmRmlTNZd3ihkIRkshBdwtZpQCLxWvL_aKByldUUoZp_J-scegqRRUYlb8OE9IgiWfgtej80jmYbkK09CTtzjqLnhnyEf3edDjFDERN5D3YfJjvCELd42RjIEcafOlPIvaIDl2OSi_nXxbhZQD1s8f9Mr1_mab7zv25AKH0LkwOpMeFves9gkfbc794vzVydn8tFy8e_1mfrgoteBiLPtGaA4cma6U1h2o2jBRozU9mJpbjdaCVVYq6DhVyjTYN9RKRFDM9l3P94vnt3kvtW9X0S1zn23Qrj09XLTrOwoUVAVwDdke3NpVDF8nTGO7dMmg93rAMKVWgaQ1rbn8LymoZOqfUubWG9koluXTP-RVmOKQPyejCiopGN-NY2JIKaLdzgS0XS9Fu12KbJ9sEk7dEvut_LUFGTzbAJ2M9jbqwbi0cxXPheVvTpu0a-rvgj8B0iHKvg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Berge, Philippe</creator><creator>Ratel, Jérémy</creator><creator>Fournier, Agnès</creator><creator>Jondreville, Catherine</creator><creator>Feidt, Cyril</creator><creator>Roudaut, Brigitte</creator><creator>Le Bizec, Bruno</creator><creator>Engel, Erwan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8149-9314</orcidid><orcidid>https://orcid.org/0000-0002-0600-5895</orcidid><orcidid>https://orcid.org/0000-0003-3828-9543</orcidid></search><sort><creationdate>20110801</creationdate><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><author>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Chickens - metabolism</topic><topic>Chromatography</topic><topic>Coccidiostats - metabolism</topic><topic>Diet</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environmental Exposure - analysis</topic><topic>Food and Nutrition</topic><topic>Food engineering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Halogenated Diphenyl Ethers - metabolism</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>PCB</topic><topic>Polybrominated diphenyl ethers</topic><topic>Polychlorinated biphenyls</topic><topic>Polychlorinated Biphenyls - metabolism</topic><topic>Polychlorinated Dibenzodioxins - analogs & derivatives</topic><topic>Polychlorinated Dibenzodioxins - metabolism</topic><topic>Polycyclic Aromatic Hydrocarbons - metabolism</topic><topic>Poultry</topic><topic>Poultry - metabolism</topic><topic>Scientific imaging</topic><topic>Tissues</topic><topic>Volatilization</topic><topic>Xenobiotics - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berge, Philippe</creatorcontrib><creatorcontrib>Ratel, Jérémy</creatorcontrib><creatorcontrib>Fournier, Agnès</creatorcontrib><creatorcontrib>Jondreville, Catherine</creatorcontrib><creatorcontrib>Feidt, Cyril</creatorcontrib><creatorcontrib>Roudaut, Brigitte</creatorcontrib><creatorcontrib>Le Bizec, Bruno</creatorcontrib><creatorcontrib>Engel, Erwan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berge, Philippe</au><au>Ratel, Jérémy</au><au>Fournier, Agnès</au><au>Jondreville, Catherine</au><au>Feidt, Cyril</au><au>Roudaut, Brigitte</au><au>Le Bizec, Bruno</au><au>Engel, Erwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>45</volume><issue>15</issue><spage>6584</spage><epage>6591</epage><pages>6584-6591</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21749145</pmid><doi>10.1021/es200747h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8149-9314</orcidid><orcidid>https://orcid.org/0000-0002-0600-5895</orcidid><orcidid>https://orcid.org/0000-0003-3828-9543</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-08, Vol.45 (15), p.6584-6591 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01019411v1 |
source | MEDLINE; ACS Publications |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Applied ecology Autoecology Biological and medical sciences Chickens - metabolism Chromatography Coccidiostats - metabolism Diet Ecotoxicology and Human Environmental Health Ecotoxicology, biological effects of pollution Environmental Exposure - analysis Food and Nutrition Food engineering Fundamental and applied biological sciences. Psychology General aspects Halogenated Diphenyl Ethers - metabolism Life Sciences Liver Liver - metabolism Mass spectrometry Metabolism Metabolome PCB Polybrominated diphenyl ethers Polychlorinated biphenyls Polychlorinated Biphenyls - metabolism Polychlorinated Dibenzodioxins - analogs & derivatives Polychlorinated Dibenzodioxins - metabolism Polycyclic Aromatic Hydrocarbons - metabolism Poultry Poultry - metabolism Scientific imaging Tissues Volatilization Xenobiotics - metabolism |
title | Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Volatile%20Compound%20Metabolic%20Signatures%20in%20Poultry%20Liver%20to%20Back-Trace%20Dietary%20Exposure%20to%20Rapidly%20Metabolized%20Xenobiotics&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Berge,%20Philippe&rft.date=2011-08-01&rft.volume=45&rft.issue=15&rft.spage=6584&rft.epage=6591&rft.pages=6584-6591&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es200747h&rft_dat=%3Cproquest_hal_p%3E889178792%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884148523&rft_id=info:pmid/21749145&rfr_iscdi=true |