Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics

The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-08, Vol.45 (15), p.6584-6591
Hauptverfasser: Berge, Philippe, Ratel, Jérémy, Fournier, Agnès, Jondreville, Catherine, Feidt, Cyril, Roudaut, Brigitte, Le Bizec, Bruno, Engel, Erwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6591
container_issue 15
container_start_page 6584
container_title Environmental science & technology
container_volume 45
creator Berge, Philippe
Ratel, Jérémy
Fournier, Agnès
Jondreville, Catherine
Feidt, Cyril
Roudaut, Brigitte
Le Bizec, Bruno
Engel, Erwan
description The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.
doi_str_mv 10.1021/es200747h
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01019411v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889178792</sourcerecordid><originalsourceid>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</originalsourceid><addsrcrecordid>eNqN0k9rFDEUAPBBFLtWD34BCYIUD6N5yWQmObbbaoUVRVvpbchkXmxqdrImM8V68qObpeuu6EFPgeT3_oVXFI-BvgDK4CUmRmlTNZd3ihkIRkshBdwtZpQCLxWvL_aKByldUUoZp_J-scegqRRUYlb8OE9IgiWfgtej80jmYbkK09CTtzjqLnhnyEf3edDjFDERN5D3YfJjvCELd42RjIEcafOlPIvaIDl2OSi_nXxbhZQD1s8f9Mr1_mab7zv25AKH0LkwOpMeFves9gkfbc794vzVydn8tFy8e_1mfrgoteBiLPtGaA4cma6U1h2o2jBRozU9mJpbjdaCVVYq6DhVyjTYN9RKRFDM9l3P94vnt3kvtW9X0S1zn23Qrj09XLTrOwoUVAVwDdke3NpVDF8nTGO7dMmg93rAMKVWgaQ1rbn8LymoZOqfUubWG9koluXTP-RVmOKQPyejCiopGN-NY2JIKaLdzgS0XS9Fu12KbJ9sEk7dEvut_LUFGTzbAJ2M9jbqwbi0cxXPheVvTpu0a-rvgj8B0iHKvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884148523</pqid></control><display><type>article</type><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</creator><creatorcontrib>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</creatorcontrib><description>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es200747h</identifier><identifier>PMID: 21749145</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; Autoecology ; Biological and medical sciences ; Chickens - metabolism ; Chromatography ; Coccidiostats - metabolism ; Diet ; Ecotoxicology and Human Environmental Health ; Ecotoxicology, biological effects of pollution ; Environmental Exposure - analysis ; Food and Nutrition ; Food engineering ; Fundamental and applied biological sciences. Psychology ; General aspects ; Halogenated Diphenyl Ethers - metabolism ; Life Sciences ; Liver ; Liver - metabolism ; Mass spectrometry ; Metabolism ; Metabolome ; PCB ; Polybrominated diphenyl ethers ; Polychlorinated biphenyls ; Polychlorinated Biphenyls - metabolism ; Polychlorinated Dibenzodioxins - analogs &amp; derivatives ; Polychlorinated Dibenzodioxins - metabolism ; Polycyclic Aromatic Hydrocarbons - metabolism ; Poultry ; Poultry - metabolism ; Scientific imaging ; Tissues ; Volatilization ; Xenobiotics - metabolism</subject><ispartof>Environmental science &amp; technology, 2011-08, Vol.45 (15), p.6584-6591</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</citedby><cites>FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</cites><orcidid>0000-0001-8149-9314 ; 0000-0002-0600-5895 ; 0000-0003-3828-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es200747h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es200747h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24388485$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21749145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01019411$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berge, Philippe</creatorcontrib><creatorcontrib>Ratel, Jérémy</creatorcontrib><creatorcontrib>Fournier, Agnès</creatorcontrib><creatorcontrib>Jondreville, Catherine</creatorcontrib><creatorcontrib>Feidt, Cyril</creatorcontrib><creatorcontrib>Roudaut, Brigitte</creatorcontrib><creatorcontrib>Le Bizec, Bruno</creatorcontrib><creatorcontrib>Engel, Erwan</creatorcontrib><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Chickens - metabolism</subject><subject>Chromatography</subject><subject>Coccidiostats - metabolism</subject><subject>Diet</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environmental Exposure - analysis</subject><subject>Food and Nutrition</subject><subject>Food engineering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Halogenated Diphenyl Ethers - metabolism</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>PCB</subject><subject>Polybrominated diphenyl ethers</subject><subject>Polychlorinated biphenyls</subject><subject>Polychlorinated Biphenyls - metabolism</subject><subject>Polychlorinated Dibenzodioxins - analogs &amp; derivatives</subject><subject>Polychlorinated Dibenzodioxins - metabolism</subject><subject>Polycyclic Aromatic Hydrocarbons - metabolism</subject><subject>Poultry</subject><subject>Poultry - metabolism</subject><subject>Scientific imaging</subject><subject>Tissues</subject><subject>Volatilization</subject><subject>Xenobiotics - metabolism</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0k9rFDEUAPBBFLtWD34BCYIUD6N5yWQmObbbaoUVRVvpbchkXmxqdrImM8V68qObpeuu6EFPgeT3_oVXFI-BvgDK4CUmRmlTNZd3ihkIRkshBdwtZpQCLxWvL_aKByldUUoZp_J-scegqRRUYlb8OE9IgiWfgtej80jmYbkK09CTtzjqLnhnyEf3edDjFDERN5D3YfJjvCELd42RjIEcafOlPIvaIDl2OSi_nXxbhZQD1s8f9Mr1_mab7zv25AKH0LkwOpMeFves9gkfbc794vzVydn8tFy8e_1mfrgoteBiLPtGaA4cma6U1h2o2jBRozU9mJpbjdaCVVYq6DhVyjTYN9RKRFDM9l3P94vnt3kvtW9X0S1zn23Qrj09XLTrOwoUVAVwDdke3NpVDF8nTGO7dMmg93rAMKVWgaQ1rbn8LymoZOqfUubWG9koluXTP-RVmOKQPyejCiopGN-NY2JIKaLdzgS0XS9Fu12KbJ9sEk7dEvut_LUFGTzbAJ2M9jbqwbi0cxXPheVvTpu0a-rvgj8B0iHKvg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Berge, Philippe</creator><creator>Ratel, Jérémy</creator><creator>Fournier, Agnès</creator><creator>Jondreville, Catherine</creator><creator>Feidt, Cyril</creator><creator>Roudaut, Brigitte</creator><creator>Le Bizec, Bruno</creator><creator>Engel, Erwan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8149-9314</orcidid><orcidid>https://orcid.org/0000-0002-0600-5895</orcidid><orcidid>https://orcid.org/0000-0003-3828-9543</orcidid></search><sort><creationdate>20110801</creationdate><title>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</title><author>Berge, Philippe ; Ratel, Jérémy ; Fournier, Agnès ; Jondreville, Catherine ; Feidt, Cyril ; Roudaut, Brigitte ; Le Bizec, Bruno ; Engel, Erwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a535t-d75a313e2a49aab196c256efcd1c63faeff1f9f891b3099c7ed70f8ee192fdbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Chickens - metabolism</topic><topic>Chromatography</topic><topic>Coccidiostats - metabolism</topic><topic>Diet</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environmental Exposure - analysis</topic><topic>Food and Nutrition</topic><topic>Food engineering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Halogenated Diphenyl Ethers - metabolism</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>PCB</topic><topic>Polybrominated diphenyl ethers</topic><topic>Polychlorinated biphenyls</topic><topic>Polychlorinated Biphenyls - metabolism</topic><topic>Polychlorinated Dibenzodioxins - analogs &amp; derivatives</topic><topic>Polychlorinated Dibenzodioxins - metabolism</topic><topic>Polycyclic Aromatic Hydrocarbons - metabolism</topic><topic>Poultry</topic><topic>Poultry - metabolism</topic><topic>Scientific imaging</topic><topic>Tissues</topic><topic>Volatilization</topic><topic>Xenobiotics - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berge, Philippe</creatorcontrib><creatorcontrib>Ratel, Jérémy</creatorcontrib><creatorcontrib>Fournier, Agnès</creatorcontrib><creatorcontrib>Jondreville, Catherine</creatorcontrib><creatorcontrib>Feidt, Cyril</creatorcontrib><creatorcontrib>Roudaut, Brigitte</creatorcontrib><creatorcontrib>Le Bizec, Bruno</creatorcontrib><creatorcontrib>Engel, Erwan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berge, Philippe</au><au>Ratel, Jérémy</au><au>Fournier, Agnès</au><au>Jondreville, Catherine</au><au>Feidt, Cyril</au><au>Roudaut, Brigitte</au><au>Le Bizec, Bruno</au><au>Engel, Erwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>45</volume><issue>15</issue><spage>6584</spage><epage>6591</epage><pages>6584-6591</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The study investigated the feasibility of using volatile compound signatures of liver tissues in poultry to detect previous dietary exposure to different types of xenobiotic. Six groups of broiler chickens were fed a similar diet either noncontaminated or contaminated with polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs; 3.14 pg WHO-TEQ/g feed, 12% moisture), polychlorinated biphenyls (PCBs; 0.08 pg WHO-TEQ/g feed, 12% moisture), polybrominated diphenyl ethers (PBDEs; 1.63 ng/g feed, 12% moisture), polycyclic aromatic hydrocarbons (PAHs; 0.72 μg/g fresh matter), or coccidiostats (0.5 mg/g feed, fresh matter). Each chicken liver was analyzed by solid-phase microextraction - mass spectrometry (SPME-MS) for volatile compound metabolic signature and by gas chromatography - high resolution mass spectrometry (GC-HRMS), gas chromatography - tandem mass spectrometry (GC-MS/MS), and liquid chromatography - tandem mass spectrometry (LC-MS/MS) to quantify xenobiotic residues. Volatile compound signature evidenced a liver metabolic response to PAH although these rapidly metabolized xenobiotics are undetectable in this organ by the reference methods. Similarly, the volatile compound metabolic signature enabled to differentiate the noncontaminated chickens from those contaminated with PBDEs or coccidiostats. In contrast, no clear signature was pointed out for slowly metabolized compounds such as PCDD/Fs and PCBs although their residues were found in liver at 50.93 (±6.71) and 0.67 (±0.1) pg WHO-TEQ/g fat, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21749145</pmid><doi>10.1021/es200747h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8149-9314</orcidid><orcidid>https://orcid.org/0000-0002-0600-5895</orcidid><orcidid>https://orcid.org/0000-0003-3828-9543</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2011-08, Vol.45 (15), p.6584-6591
issn 0013-936X
1520-5851
language eng
recordid cdi_hal_primary_oai_HAL_hal_01019411v1
source MEDLINE; ACS Publications
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Applied ecology
Autoecology
Biological and medical sciences
Chickens - metabolism
Chromatography
Coccidiostats - metabolism
Diet
Ecotoxicology and Human Environmental Health
Ecotoxicology, biological effects of pollution
Environmental Exposure - analysis
Food and Nutrition
Food engineering
Fundamental and applied biological sciences. Psychology
General aspects
Halogenated Diphenyl Ethers - metabolism
Life Sciences
Liver
Liver - metabolism
Mass spectrometry
Metabolism
Metabolome
PCB
Polybrominated diphenyl ethers
Polychlorinated biphenyls
Polychlorinated Biphenyls - metabolism
Polychlorinated Dibenzodioxins - analogs & derivatives
Polychlorinated Dibenzodioxins - metabolism
Polycyclic Aromatic Hydrocarbons - metabolism
Poultry
Poultry - metabolism
Scientific imaging
Tissues
Volatilization
Xenobiotics - metabolism
title Use of Volatile Compound Metabolic Signatures in Poultry Liver to Back-Trace Dietary Exposure to Rapidly Metabolized Xenobiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Volatile%20Compound%20Metabolic%20Signatures%20in%20Poultry%20Liver%20to%20Back-Trace%20Dietary%20Exposure%20to%20Rapidly%20Metabolized%20Xenobiotics&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Berge,%20Philippe&rft.date=2011-08-01&rft.volume=45&rft.issue=15&rft.spage=6584&rft.epage=6591&rft.pages=6584-6591&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es200747h&rft_dat=%3Cproquest_hal_p%3E889178792%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884148523&rft_id=info:pmid/21749145&rfr_iscdi=true