Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development

Mice out of step on X inactivation X-chromosome inactivation is an essential process in female mammals that compensates for the presence of two X-chromosomes by suppressing gene expression from one of them. A study of the early developmental time course of X-chromosome inactivation in mice, rabbits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2011-04, Vol.472 (7343), p.370-374
Hauptverfasser: Okamoto, Ikuhiro, Patrat, Catherine, Thépot, Dominique, Peynot, Nathalie, Fauque, Patricia, Daniel, Nathalie, Diabangouaya, Patricia, Wolf, Jean-Philippe, Renard, Jean-Paul, Duranthon, Véronique, Heard, Edith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 7343
container_start_page 370
container_title Nature (London)
container_volume 472
creator Okamoto, Ikuhiro
Patrat, Catherine
Thépot, Dominique
Peynot, Nathalie
Fauque, Patricia
Daniel, Nathalie
Diabangouaya, Patricia
Wolf, Jean-Philippe
Renard, Jean-Paul
Duranthon, Véronique
Heard, Edith
description Mice out of step on X inactivation X-chromosome inactivation is an essential process in female mammals that compensates for the presence of two X-chromosomes by suppressing gene expression from one of them. A study of the early developmental time course of X-chromosome inactivation in mice, rabbits and humans shows that the processes in mice, in which most of previous analyses have been done, differ significantly from those in other eutherian species. The study highlights a diversity in X-inactivation regulation that may reflect the changing nature of developmental processes during evolution. X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes 1 . The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript). Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells. Here we show that other eutherian mammals have very different strategies for initiating XCI. In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice. Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass. In rabbits, this triggers XCI on both X chromosomes in some cells. In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST . The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice. Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis.
doi_str_mv 10.1038/nature09872
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01019321v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632494872</galeid><sourcerecordid>A632494872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-3428efcc557bd3a75b40f169869c7842c28fc9bc9a105f7a717794ec6cd0fbeb3</originalsourceid><addsrcrecordid>eNqF0l1rFDEUBuBBFLtWr7yXQREpOppksvm4XEq1hQXBD_AuZDJndlNmkm2SWey_b4Zdu10RvAoJDyc5J29RvMToI0a1-OR0GgMgKTh5VMww5ayiTPDHxQwhIiokanZSPIvxGiE0x5w-LU5IVlgyNiv0xZjWEKx25aCHQfexHCOUrd1CyGtMQSdYWYhl8qV1Ntm8L39VZh384KMfIJ9qk-xWJ-td2Y7BulXZwhZ6vxnApefFky6XhRf79bT4-fnix_lltfz65ep8sawMoyhVNSUCOmPmc960tebzhqIOMymYNFxQYojojGyM1BjNO6455lxSMMy0qGugqU-Ls13dte7VJthBh1vltVWXi6WazhBGWNYEb3G273Z2E_zNCDGpwUYDfa8d-DEqiUhdC4b4f6Vg-eGMUpLl67_ktR-Dyy1nRAWWgkwXv9mhle5BWdf5PGAzlVQLVhMqaf7FQ6kjZTb2Rj1EZ0fIeJfgd1rpMUZ19f3bccH3O2uCjzFAdz8gjNQUIvUgRFm_2ncyNgO09_ZPajJ4uwc6Gt13QTtj48FRxHP0pm4_7FzcTKmAcBjJv-69A1l-3C0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864819821</pqid></control><display><type>article</type><title>Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Okamoto, Ikuhiro ; Patrat, Catherine ; Thépot, Dominique ; Peynot, Nathalie ; Fauque, Patricia ; Daniel, Nathalie ; Diabangouaya, Patricia ; Wolf, Jean-Philippe ; Renard, Jean-Paul ; Duranthon, Véronique ; Heard, Edith</creator><creatorcontrib>Okamoto, Ikuhiro ; Patrat, Catherine ; Thépot, Dominique ; Peynot, Nathalie ; Fauque, Patricia ; Daniel, Nathalie ; Diabangouaya, Patricia ; Wolf, Jean-Philippe ; Renard, Jean-Paul ; Duranthon, Véronique ; Heard, Edith</creatorcontrib><description>Mice out of step on X inactivation X-chromosome inactivation is an essential process in female mammals that compensates for the presence of two X-chromosomes by suppressing gene expression from one of them. A study of the early developmental time course of X-chromosome inactivation in mice, rabbits and humans shows that the processes in mice, in which most of previous analyses have been done, differ significantly from those in other eutherian species. The study highlights a diversity in X-inactivation regulation that may reflect the changing nature of developmental processes during evolution. X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes 1 . The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript). Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells. Here we show that other eutherian mammals have very different strategies for initiating XCI. In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice. Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass. In rabbits, this triggers XCI on both X chromosomes in some cells. In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST . The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice. Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature09872</identifier><identifier>PMID: 21471966</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136/2086 ; 631/208/182 ; 631/337/176/1433 ; Animal development ; Animals ; Biological and medical sciences ; Biological Evolution ; Blastocyst - metabolism ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Chromosomes ; Chromosomes, Mammalian - genetics ; Compensation ; Development Biology ; Dosage Compensation, Genetic - genetics ; Embryo, Mammalian - embryology ; Embryo, Mammalian - metabolism ; Embryonic growth stage ; Eutherians ; Female ; Females ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental - genetics ; Genes, X-Linked - genetics ; Genetic aspects ; Genetic engineering ; Genomic Imprinting - genetics ; Histones - metabolism ; Humanities and Social Sciences ; Humans ; Hypoxanthine Phosphoribosyltransferase - genetics ; Inactivation ; letter ; Life Sciences ; Male ; Males ; Mammals ; Mammals - embryology ; Mammals - genetics ; Mice ; Molecular and cellular biology ; multidisciplinary ; Observations ; Parthenogenesis ; Physiological aspects ; Rabbits ; Reproductive Biology ; RNA, Long Noncoding ; RNA, Untranslated - genetics ; Science ; Science (multidisciplinary) ; Species Specificity ; Up-Regulation - genetics ; X Chromosome - genetics ; X chromosome inactivation ; X Chromosome Inactivation - genetics</subject><ispartof>Nature (London), 2011-04, Vol.472 (7343), p.370-374</ispartof><rights>Springer Nature Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 21, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-3428efcc557bd3a75b40f169869c7842c28fc9bc9a105f7a717794ec6cd0fbeb3</citedby><cites>FETCH-LOGICAL-c640t-3428efcc557bd3a75b40f169869c7842c28fc9bc9a105f7a717794ec6cd0fbeb3</cites><orcidid>0000-0002-1126-4322 ; 0000-0001-8120-7481 ; 0000-0002-2251-1296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature09872$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature09872$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24070021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21471966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01019321$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Ikuhiro</creatorcontrib><creatorcontrib>Patrat, Catherine</creatorcontrib><creatorcontrib>Thépot, Dominique</creatorcontrib><creatorcontrib>Peynot, Nathalie</creatorcontrib><creatorcontrib>Fauque, Patricia</creatorcontrib><creatorcontrib>Daniel, Nathalie</creatorcontrib><creatorcontrib>Diabangouaya, Patricia</creatorcontrib><creatorcontrib>Wolf, Jean-Philippe</creatorcontrib><creatorcontrib>Renard, Jean-Paul</creatorcontrib><creatorcontrib>Duranthon, Véronique</creatorcontrib><creatorcontrib>Heard, Edith</creatorcontrib><title>Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Mice out of step on X inactivation X-chromosome inactivation is an essential process in female mammals that compensates for the presence of two X-chromosomes by suppressing gene expression from one of them. A study of the early developmental time course of X-chromosome inactivation in mice, rabbits and humans shows that the processes in mice, in which most of previous analyses have been done, differ significantly from those in other eutherian species. The study highlights a diversity in X-inactivation regulation that may reflect the changing nature of developmental processes during evolution. X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes 1 . The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript). Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells. Here we show that other eutherian mammals have very different strategies for initiating XCI. In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice. Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass. In rabbits, this triggers XCI on both X chromosomes in some cells. In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST . The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice. Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis.</description><subject>631/136/2086</subject><subject>631/208/182</subject><subject>631/337/176/1433</subject><subject>Animal development</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Blastocyst - metabolism</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Chromosomes</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Compensation</subject><subject>Development Biology</subject><subject>Dosage Compensation, Genetic - genetics</subject><subject>Embryo, Mammalian - embryology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryonic growth stage</subject><subject>Eutherians</subject><subject>Female</subject><subject>Females</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Genes, X-Linked - genetics</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genomic Imprinting - genetics</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxanthine Phosphoribosyltransferase - genetics</subject><subject>Inactivation</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Males</subject><subject>Mammals</subject><subject>Mammals - embryology</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Parthenogenesis</subject><subject>Physiological aspects</subject><subject>Rabbits</subject><subject>Reproductive Biology</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Untranslated - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Species Specificity</subject><subject>Up-Regulation - genetics</subject><subject>X Chromosome - genetics</subject><subject>X chromosome inactivation</subject><subject>X Chromosome Inactivation - genetics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0l1rFDEUBuBBFLtWr7yXQREpOppksvm4XEq1hQXBD_AuZDJndlNmkm2SWey_b4Zdu10RvAoJDyc5J29RvMToI0a1-OR0GgMgKTh5VMww5ayiTPDHxQwhIiokanZSPIvxGiE0x5w-LU5IVlgyNiv0xZjWEKx25aCHQfexHCOUrd1CyGtMQSdYWYhl8qV1Ntm8L39VZh384KMfIJ9qk-xWJ-td2Y7BulXZwhZ6vxnApefFky6XhRf79bT4-fnix_lltfz65ep8sawMoyhVNSUCOmPmc960tebzhqIOMymYNFxQYojojGyM1BjNO6455lxSMMy0qGugqU-Ls13dte7VJthBh1vltVWXi6WazhBGWNYEb3G273Z2E_zNCDGpwUYDfa8d-DEqiUhdC4b4f6Vg-eGMUpLl67_ktR-Dyy1nRAWWgkwXv9mhle5BWdf5PGAzlVQLVhMqaf7FQ6kjZTb2Rj1EZ0fIeJfgd1rpMUZ19f3bccH3O2uCjzFAdz8gjNQUIvUgRFm_2ncyNgO09_ZPajJ4uwc6Gt13QTtj48FRxHP0pm4_7FzcTKmAcBjJv-69A1l-3C0</recordid><startdate>20110421</startdate><enddate>20110421</enddate><creator>Okamoto, Ikuhiro</creator><creator>Patrat, Catherine</creator><creator>Thépot, Dominique</creator><creator>Peynot, Nathalie</creator><creator>Fauque, Patricia</creator><creator>Daniel, Nathalie</creator><creator>Diabangouaya, Patricia</creator><creator>Wolf, Jean-Philippe</creator><creator>Renard, Jean-Paul</creator><creator>Duranthon, Véronique</creator><creator>Heard, Edith</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1126-4322</orcidid><orcidid>https://orcid.org/0000-0001-8120-7481</orcidid><orcidid>https://orcid.org/0000-0002-2251-1296</orcidid></search><sort><creationdate>20110421</creationdate><title>Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development</title><author>Okamoto, Ikuhiro ; Patrat, Catherine ; Thépot, Dominique ; Peynot, Nathalie ; Fauque, Patricia ; Daniel, Nathalie ; Diabangouaya, Patricia ; Wolf, Jean-Philippe ; Renard, Jean-Paul ; Duranthon, Véronique ; Heard, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-3428efcc557bd3a75b40f169869c7842c28fc9bc9a105f7a717794ec6cd0fbeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/136/2086</topic><topic>631/208/182</topic><topic>631/337/176/1433</topic><topic>Animal development</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Blastocyst - metabolism</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Chromosomes</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Compensation</topic><topic>Development Biology</topic><topic>Dosage Compensation, Genetic - genetics</topic><topic>Embryo, Mammalian - embryology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryonic growth stage</topic><topic>Eutherians</topic><topic>Female</topic><topic>Females</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Genes, X-Linked - genetics</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genomic Imprinting - genetics</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxanthine Phosphoribosyltransferase - genetics</topic><topic>Inactivation</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Males</topic><topic>Mammals</topic><topic>Mammals - embryology</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Parthenogenesis</topic><topic>Physiological aspects</topic><topic>Rabbits</topic><topic>Reproductive Biology</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Untranslated - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Species Specificity</topic><topic>Up-Regulation - genetics</topic><topic>X Chromosome - genetics</topic><topic>X chromosome inactivation</topic><topic>X Chromosome Inactivation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Ikuhiro</creatorcontrib><creatorcontrib>Patrat, Catherine</creatorcontrib><creatorcontrib>Thépot, Dominique</creatorcontrib><creatorcontrib>Peynot, Nathalie</creatorcontrib><creatorcontrib>Fauque, Patricia</creatorcontrib><creatorcontrib>Daniel, Nathalie</creatorcontrib><creatorcontrib>Diabangouaya, Patricia</creatorcontrib><creatorcontrib>Wolf, Jean-Philippe</creatorcontrib><creatorcontrib>Renard, Jean-Paul</creatorcontrib><creatorcontrib>Duranthon, Véronique</creatorcontrib><creatorcontrib>Heard, Edith</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Ikuhiro</au><au>Patrat, Catherine</au><au>Thépot, Dominique</au><au>Peynot, Nathalie</au><au>Fauque, Patricia</au><au>Daniel, Nathalie</au><au>Diabangouaya, Patricia</au><au>Wolf, Jean-Philippe</au><au>Renard, Jean-Paul</au><au>Duranthon, Véronique</au><au>Heard, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-04-21</date><risdate>2011</risdate><volume>472</volume><issue>7343</issue><spage>370</spage><epage>374</epage><pages>370-374</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Mice out of step on X inactivation X-chromosome inactivation is an essential process in female mammals that compensates for the presence of two X-chromosomes by suppressing gene expression from one of them. A study of the early developmental time course of X-chromosome inactivation in mice, rabbits and humans shows that the processes in mice, in which most of previous analyses have been done, differ significantly from those in other eutherian species. The study highlights a diversity in X-inactivation regulation that may reflect the changing nature of developmental processes during evolution. X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes 1 . The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript). Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells. Here we show that other eutherian mammals have very different strategies for initiating XCI. In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice. Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass. In rabbits, this triggers XCI on both X chromosomes in some cells. In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST . The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice. Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21471966</pmid><doi>10.1038/nature09872</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1126-4322</orcidid><orcidid>https://orcid.org/0000-0001-8120-7481</orcidid><orcidid>https://orcid.org/0000-0002-2251-1296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2011-04, Vol.472 (7343), p.370-374
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_01019321v1
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/136/2086
631/208/182
631/337/176/1433
Animal development
Animals
Biological and medical sciences
Biological Evolution
Blastocyst - metabolism
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Chromosomes
Chromosomes, Mammalian - genetics
Compensation
Development Biology
Dosage Compensation, Genetic - genetics
Embryo, Mammalian - embryology
Embryo, Mammalian - metabolism
Embryonic growth stage
Eutherians
Female
Females
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental - genetics
Genes, X-Linked - genetics
Genetic aspects
Genetic engineering
Genomic Imprinting - genetics
Histones - metabolism
Humanities and Social Sciences
Humans
Hypoxanthine Phosphoribosyltransferase - genetics
Inactivation
letter
Life Sciences
Male
Males
Mammals
Mammals - embryology
Mammals - genetics
Mice
Molecular and cellular biology
multidisciplinary
Observations
Parthenogenesis
Physiological aspects
Rabbits
Reproductive Biology
RNA, Long Noncoding
RNA, Untranslated - genetics
Science
Science (multidisciplinary)
Species Specificity
Up-Regulation - genetics
X Chromosome - genetics
X chromosome inactivation
X Chromosome Inactivation - genetics
title Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eutherian%20mammals%20use%20diverse%20strategies%20to%20initiate%20X-chromosome%20inactivation%20during%20development&rft.jtitle=Nature%20(London)&rft.au=Okamoto,%20Ikuhiro&rft.date=2011-04-21&rft.volume=472&rft.issue=7343&rft.spage=370&rft.epage=374&rft.pages=370-374&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature09872&rft_dat=%3Cgale_hal_p%3EA632494872%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864819821&rft_id=info:pmid/21471966&rft_galeid=A632494872&rfr_iscdi=true