Fast automatic myocardial segmentation in 4D cine CMR datasets

[Display omitted] •An automatic 3D+time left ventricle (LV) segmentation framework.•3D cylindrical extension of B-spline Explicit Active Surfaces (BEAS) framework.•Fast threshold-based BEAS provides efficient stack initialization.•Anatomically constrained optical flow offers temporal tracking of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2014-10, Vol.18 (7), p.1115-1131
Hauptverfasser: Queirós, Sandro, Barbosa, Daniel, Heyde, Brecht, Morais, Pedro, Vilaça, João L., Friboulet, Denis, Bernard, Olivier, D’hooge, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 7
container_start_page 1115
container_title Medical image analysis
container_volume 18
creator Queirós, Sandro
Barbosa, Daniel
Heyde, Brecht
Morais, Pedro
Vilaça, João L.
Friboulet, Denis
Bernard, Olivier
D’hooge, Jan
description [Display omitted] •An automatic 3D+time left ventricle (LV) segmentation framework.•3D cylindrical extension of B-spline Explicit Active Surfaces (BEAS) framework.•Fast threshold-based BEAS provides efficient stack initialization.•Anatomically constrained optical flow offers temporal tracking of the LV surface.•Leading results against state-of-the-art methods in accuracy and computational burden. A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and (3) a tracking procedure. Hereto, we propose to adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR images by integrating dedicated energy terms. Moreover, we extend the coupled BEAS formalism towards its application in 3D MR data by adapting it to a cylindrical space suited to deal with the topology of the image data. Furthermore, a fast stack initialization method is presented for efficient initialization and to enforce consistent cylindrical topology. Finally, we make use of an anatomically constrained optical flow method for temporal tracking of the LV surface. The proposed framework has been validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.
doi_str_mv 10.1016/j.media.2014.06.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01015768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841514000954</els_id><sourcerecordid>1556284814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-37102caa6df54877e6ef458c5aa0ffb59ff84ae10872c08a04959e31d22bf05f3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVJady0v6BQ9pgcvBlpJa18aCA4TR1wCZT2LMbaUSKzH85KDuTfR44dH3uaYeaZd-Bh7BuHkgPXl-uyoyZgKYDLEnQJwD-wCa80nxopqpNjz9Up-xzjGgBqKeETOxUKpICZmbCrW4ypwG0aOkzBFd3L4HDMsW0R6aGjPuXx0BehL-RN4UJPxfz3n6LBhJFS_MI-emwjfT3UM_bv9uff-WK6vP91N79eTp3UVZpWNQfhEHXjlTR1TZq8VMYpRPB-pWbeG4nEwdTCgUGQMzWjijdCrDwoX52xi33uI7Z2M4YOxxc7YLCL66XdzSArUbU2zzyz53t2Mw5PW4rJdiE6alvsadhGy5XSwkjDZUarPerGIcaR_DGbg91Jtmv7JtnuJFvQNkvOV98PD7arvD3evFvNwI89QFnJc6DRRheodzlpJJdsM4T_PngFfuaMBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556284814</pqid></control><display><type>article</type><title>Fast automatic myocardial segmentation in 4D cine CMR datasets</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Queirós, Sandro ; Barbosa, Daniel ; Heyde, Brecht ; Morais, Pedro ; Vilaça, João L. ; Friboulet, Denis ; Bernard, Olivier ; D’hooge, Jan</creator><creatorcontrib>Queirós, Sandro ; Barbosa, Daniel ; Heyde, Brecht ; Morais, Pedro ; Vilaça, João L. ; Friboulet, Denis ; Bernard, Olivier ; D’hooge, Jan</creatorcontrib><description>[Display omitted] •An automatic 3D+time left ventricle (LV) segmentation framework.•3D cylindrical extension of B-spline Explicit Active Surfaces (BEAS) framework.•Fast threshold-based BEAS provides efficient stack initialization.•Anatomically constrained optical flow offers temporal tracking of the LV surface.•Leading results against state-of-the-art methods in accuracy and computational burden. A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and (3) a tracking procedure. Hereto, we propose to adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR images by integrating dedicated energy terms. Moreover, we extend the coupled BEAS formalism towards its application in 3D MR data by adapting it to a cylindrical space suited to deal with the topology of the image data. Furthermore, a fast stack initialization method is presented for efficient initialization and to enforce consistent cylindrical topology. Finally, we make use of an anatomically constrained optical flow method for temporal tracking of the LV surface. The proposed framework has been validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2014.06.001</identifier><identifier>PMID: 25042098</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Automatic initialization ; Cardiac cine MRI ; Engineering Sciences ; Fast image segmentation ; Heart Ventricles ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Left ventricle segmentation ; Magnetic Resonance Imaging, Cine - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and Image processing</subject><ispartof>Medical image analysis, 2014-10, Vol.18 (7), p.1115-1131</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-37102caa6df54877e6ef458c5aa0ffb59ff84ae10872c08a04959e31d22bf05f3</citedby><cites>FETCH-LOGICAL-c463t-37102caa6df54877e6ef458c5aa0ffb59ff84ae10872c08a04959e31d22bf05f3</cites><orcidid>0000-0002-9166-7964 ; 0000-0003-0752-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841514000954$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25042098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01015768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Queirós, Sandro</creatorcontrib><creatorcontrib>Barbosa, Daniel</creatorcontrib><creatorcontrib>Heyde, Brecht</creatorcontrib><creatorcontrib>Morais, Pedro</creatorcontrib><creatorcontrib>Vilaça, João L.</creatorcontrib><creatorcontrib>Friboulet, Denis</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><creatorcontrib>D’hooge, Jan</creatorcontrib><title>Fast automatic myocardial segmentation in 4D cine CMR datasets</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted] •An automatic 3D+time left ventricle (LV) segmentation framework.•3D cylindrical extension of B-spline Explicit Active Surfaces (BEAS) framework.•Fast threshold-based BEAS provides efficient stack initialization.•Anatomically constrained optical flow offers temporal tracking of the LV surface.•Leading results against state-of-the-art methods in accuracy and computational burden. A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and (3) a tracking procedure. Hereto, we propose to adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR images by integrating dedicated energy terms. Moreover, we extend the coupled BEAS formalism towards its application in 3D MR data by adapting it to a cylindrical space suited to deal with the topology of the image data. Furthermore, a fast stack initialization method is presented for efficient initialization and to enforce consistent cylindrical topology. Finally, we make use of an anatomically constrained optical flow method for temporal tracking of the LV surface. The proposed framework has been validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.</description><subject>Algorithms</subject><subject>Automatic initialization</subject><subject>Cardiac cine MRI</subject><subject>Engineering Sciences</subject><subject>Fast image segmentation</subject><subject>Heart Ventricles</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Left ventricle segmentation</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and Image processing</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVJady0v6BQ9pgcvBlpJa18aCA4TR1wCZT2LMbaUSKzH85KDuTfR44dH3uaYeaZd-Bh7BuHkgPXl-uyoyZgKYDLEnQJwD-wCa80nxopqpNjz9Up-xzjGgBqKeETOxUKpICZmbCrW4ypwG0aOkzBFd3L4HDMsW0R6aGjPuXx0BehL-RN4UJPxfz3n6LBhJFS_MI-emwjfT3UM_bv9uff-WK6vP91N79eTp3UVZpWNQfhEHXjlTR1TZq8VMYpRPB-pWbeG4nEwdTCgUGQMzWjijdCrDwoX52xi33uI7Z2M4YOxxc7YLCL66XdzSArUbU2zzyz53t2Mw5PW4rJdiE6alvsadhGy5XSwkjDZUarPerGIcaR_DGbg91Jtmv7JtnuJFvQNkvOV98PD7arvD3evFvNwI89QFnJc6DRRheodzlpJJdsM4T_PngFfuaMBA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Queirós, Sandro</creator><creator>Barbosa, Daniel</creator><creator>Heyde, Brecht</creator><creator>Morais, Pedro</creator><creator>Vilaça, João L.</creator><creator>Friboulet, Denis</creator><creator>Bernard, Olivier</creator><creator>D’hooge, Jan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid></search><sort><creationdate>20141001</creationdate><title>Fast automatic myocardial segmentation in 4D cine CMR datasets</title><author>Queirós, Sandro ; Barbosa, Daniel ; Heyde, Brecht ; Morais, Pedro ; Vilaça, João L. ; Friboulet, Denis ; Bernard, Olivier ; D’hooge, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-37102caa6df54877e6ef458c5aa0ffb59ff84ae10872c08a04959e31d22bf05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Automatic initialization</topic><topic>Cardiac cine MRI</topic><topic>Engineering Sciences</topic><topic>Fast image segmentation</topic><topic>Heart Ventricles</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Left ventricle segmentation</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queirós, Sandro</creatorcontrib><creatorcontrib>Barbosa, Daniel</creatorcontrib><creatorcontrib>Heyde, Brecht</creatorcontrib><creatorcontrib>Morais, Pedro</creatorcontrib><creatorcontrib>Vilaça, João L.</creatorcontrib><creatorcontrib>Friboulet, Denis</creatorcontrib><creatorcontrib>Bernard, Olivier</creatorcontrib><creatorcontrib>D’hooge, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queirós, Sandro</au><au>Barbosa, Daniel</au><au>Heyde, Brecht</au><au>Morais, Pedro</au><au>Vilaça, João L.</au><au>Friboulet, Denis</au><au>Bernard, Olivier</au><au>D’hooge, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast automatic myocardial segmentation in 4D cine CMR datasets</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>18</volume><issue>7</issue><spage>1115</spage><epage>1131</epage><pages>1115-1131</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted] •An automatic 3D+time left ventricle (LV) segmentation framework.•3D cylindrical extension of B-spline Explicit Active Surfaces (BEAS) framework.•Fast threshold-based BEAS provides efficient stack initialization.•Anatomically constrained optical flow offers temporal tracking of the LV surface.•Leading results against state-of-the-art methods in accuracy and computational burden. A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and (3) a tracking procedure. Hereto, we propose to adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR images by integrating dedicated energy terms. Moreover, we extend the coupled BEAS formalism towards its application in 3D MR data by adapting it to a cylindrical space suited to deal with the topology of the image data. Furthermore, a fast stack initialization method is presented for efficient initialization and to enforce consistent cylindrical topology. Finally, we make use of an anatomically constrained optical flow method for temporal tracking of the LV surface. The proposed framework has been validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25042098</pmid><doi>10.1016/j.media.2014.06.001</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2014-10, Vol.18 (7), p.1115-1131
issn 1361-8415
1361-8423
language eng
recordid cdi_hal_primary_oai_HAL_hal_01015768v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Automatic initialization
Cardiac cine MRI
Engineering Sciences
Fast image segmentation
Heart Ventricles
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional
Left ventricle segmentation
Magnetic Resonance Imaging, Cine - methods
Reproducibility of Results
Sensitivity and Specificity
Signal and Image processing
title Fast automatic myocardial segmentation in 4D cine CMR datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20automatic%20myocardial%20segmentation%20in%204D%20cine%20CMR%20datasets&rft.jtitle=Medical%20image%20analysis&rft.au=Queir%C3%B3s,%20Sandro&rft.date=2014-10-01&rft.volume=18&rft.issue=7&rft.spage=1115&rft.epage=1131&rft.pages=1115-1131&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2014.06.001&rft_dat=%3Cproquest_hal_p%3E1556284814%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556284814&rft_id=info:pmid/25042098&rft_els_id=S1361841514000954&rfr_iscdi=true