Nonequilibrium glassy dynamics of self-propelled hard disks

We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-06, Vol.112 (22), p.220602-220602, Article 220602
1. Verfasser: Berthier, Ludovic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220602
container_issue 22
container_start_page 220602
container_title Physical review letters
container_volume 112
creator Berthier, Ludovic
description We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic divergence resulting from the emergence of highly collective dynamics. These results show that dense assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by self-propulsion mechanisms.
doi_str_mv 10.1103/PhysRevLett.112.220602
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01010555v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1539477283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-26ddbe56412829f3dc3eb8ce26153889a9e83119b244385ab023fb674f2387693</originalsourceid><addsrcrecordid>eNqNkU9Lw0AQxRdRbK1-hZKjHlJ39k92F0-lqBWCiuh52SQbG02aNpsU8u3dklo8yhwGHr838-AhNAU8A8D09nXVuze7i23beoHMCMERJidoDFioUACwUzTGmEKoMBYjdOHcF8YYSCTP0YgwxZRgaozunuu13XZFWSRN0VXBZ2mc64OsX5uqSF1Q54GzZR5umnpjy9Jmwco0WZAV7ttdorPclM5eHfYEfTzcvy-WYfzy-LSYx2HKhGpDEmVZYnnEgEiicpql1CYytSQCTqVURllJAVRCGKOSmwQTmieRYDmhUkSKTtDNcHdlSr1piso0va5NoZfzWO81DH445zvw7PXA-sDbzrpWV4VLfXKztnXnNAiBiQTJ_4FyqpgQRFKPRgOaNrVzjc2PMQDrfR_6Tx9eIHrowxunhx9dUtnsaPstgP4AtTuHCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539477283</pqid></control><display><type>article</type><title>Nonequilibrium glassy dynamics of self-propelled hard disks</title><source>American Physical Society Journals</source><creator>Berthier, Ludovic</creator><creatorcontrib>Berthier, Ludovic</creatorcontrib><description>We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic divergence resulting from the emergence of highly collective dynamics. These results show that dense assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by self-propulsion mechanisms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.112.220602</identifier><identifier>PMID: 24949749</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Computer simulation ; Condensed Matter ; Density ; Disks ; Dynamic tests ; Dynamical systems ; Dynamics ; Glass transition ; Glassy ; Physics ; Soft Condensed Matter ; Statistical Mechanics</subject><ispartof>Physical review letters, 2014-06, Vol.112 (22), p.220602-220602, Article 220602</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-26ddbe56412829f3dc3eb8ce26153889a9e83119b244385ab023fb674f2387693</citedby><cites>FETCH-LOGICAL-c479t-26ddbe56412829f3dc3eb8ce26153889a9e83119b244385ab023fb674f2387693</cites><orcidid>0000-0003-2059-702X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24949749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01010555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthier, Ludovic</creatorcontrib><title>Nonequilibrium glassy dynamics of self-propelled hard disks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic divergence resulting from the emergence of highly collective dynamics. These results show that dense assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by self-propulsion mechanisms.</description><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Density</subject><subject>Disks</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Glass transition</subject><subject>Glassy</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Statistical Mechanics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9Lw0AQxRdRbK1-hZKjHlJ39k92F0-lqBWCiuh52SQbG02aNpsU8u3dklo8yhwGHr838-AhNAU8A8D09nXVuze7i23beoHMCMERJidoDFioUACwUzTGmEKoMBYjdOHcF8YYSCTP0YgwxZRgaozunuu13XZFWSRN0VXBZ2mc64OsX5uqSF1Q54GzZR5umnpjy9Jmwco0WZAV7ttdorPclM5eHfYEfTzcvy-WYfzy-LSYx2HKhGpDEmVZYnnEgEiicpql1CYytSQCTqVURllJAVRCGKOSmwQTmieRYDmhUkSKTtDNcHdlSr1piso0va5NoZfzWO81DH445zvw7PXA-sDbzrpWV4VLfXKztnXnNAiBiQTJ_4FyqpgQRFKPRgOaNrVzjc2PMQDrfR_6Tx9eIHrowxunhx9dUtnsaPstgP4AtTuHCg</recordid><startdate>20140606</startdate><enddate>20140606</enddate><creator>Berthier, Ludovic</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2059-702X</orcidid></search><sort><creationdate>20140606</creationdate><title>Nonequilibrium glassy dynamics of self-propelled hard disks</title><author>Berthier, Ludovic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-26ddbe56412829f3dc3eb8ce26153889a9e83119b244385ab023fb674f2387693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Density</topic><topic>Disks</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Glass transition</topic><topic>Glassy</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthier, Ludovic</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthier, Ludovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium glassy dynamics of self-propelled hard disks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-06-06</date><risdate>2014</risdate><volume>112</volume><issue>22</issue><spage>220602</spage><epage>220602</epage><pages>220602-220602</pages><artnum>220602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic divergence resulting from the emergence of highly collective dynamics. These results show that dense assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by self-propulsion mechanisms.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>24949749</pmid><doi>10.1103/PhysRevLett.112.220602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2059-702X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-06, Vol.112 (22), p.220602-220602, Article 220602
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01010555v1
source American Physical Society Journals
subjects Computer simulation
Condensed Matter
Density
Disks
Dynamic tests
Dynamical systems
Dynamics
Glass transition
Glassy
Physics
Soft Condensed Matter
Statistical Mechanics
title Nonequilibrium glassy dynamics of self-propelled hard disks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20glassy%20dynamics%20of%20self-propelled%20hard%20disks&rft.jtitle=Physical%20review%20letters&rft.au=Berthier,%20Ludovic&rft.date=2014-06-06&rft.volume=112&rft.issue=22&rft.spage=220602&rft.epage=220602&rft.pages=220602-220602&rft.artnum=220602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.112.220602&rft_dat=%3Cproquest_hal_p%3E1539477283%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539477283&rft_id=info:pmid/24949749&rfr_iscdi=true