Introduction to the algebra of separators with application to path planning

Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2014-08, Vol.33, p.141-147
Hauptverfasser: Jaulin, Luc, Desrochers, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue
container_start_page 141
container_title Engineering applications of artificial intelligence
container_volume 33
creator Jaulin, Luc
Desrochers, Benoît
description Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.
doi_str_mv 10.1016/j.engappai.2014.04.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01006867v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197614000864</els_id><sourcerecordid>1551090307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVpoa7br1D22B7Wmdk_0u6tJiSxiSGX9izG2llbZr3aSnJCv31lHOcaGBgYfvNm3hPiO8ICAeXNYcHjjqaJ7KIArBaQCuGDmGGjylwq2X4UM2jrIsdWyc_iSwgHACibSs7E43qM3nUnE60bs-iyuOeMhh1vPWWuzwJP5Ck6H7IXG_dZujNYQ1d6ojSbBhpHO-6-ik89DYG_vfa5-HN_9_t2lW-eHta3y01uqkLFvOQOmZqib9pOdg0ZhYZ6bkxTqLoHrLeIIM1WtbCtVI09FgWXJUFrsE9IORc_L7p7GvTk7ZH8P-3I6tVyo8-zZB9kI9UzJvbHhZ28-3viEPXRBsNDepndKWisa4QWSlAJlRfUeBeC5_5NG0Gfk9YHfU1an5PWUJ1PpcVfl0VOpp8tex2M5dFwZz2bqDtn35P4Dwf-ihI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090307</pqid></control><display><type>article</type><title>Introduction to the algebra of separators with application to path planning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jaulin, Luc ; Desrochers, Benoît</creator><creatorcontrib>Jaulin, Luc ; Desrochers, Benoît</creatorcontrib><description>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2014.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Approximation ; Automatic ; Contractors ; Engineering Sciences ; Expert systems ; Interval analysis ; Intervals ; Mathematical analysis ; Path planning ; Separators ; Set characterization</subject><ispartof>Engineering applications of artificial intelligence, 2014-08, Vol.33, p.141-147</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</citedby><cites>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</cites><orcidid>0000-0002-0938-0615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2014.04.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01006867$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaulin, Luc</creatorcontrib><creatorcontrib>Desrochers, Benoît</creatorcontrib><title>Introduction to the algebra of separators with application to path planning</title><title>Engineering applications of artificial intelligence</title><description>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Automatic</subject><subject>Contractors</subject><subject>Engineering Sciences</subject><subject>Expert systems</subject><subject>Interval analysis</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Path planning</subject><subject>Separators</subject><subject>Set characterization</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVpoa7br1D22B7Wmdk_0u6tJiSxiSGX9izG2llbZr3aSnJCv31lHOcaGBgYfvNm3hPiO8ICAeXNYcHjjqaJ7KIArBaQCuGDmGGjylwq2X4UM2jrIsdWyc_iSwgHACibSs7E43qM3nUnE60bs-iyuOeMhh1vPWWuzwJP5Ck6H7IXG_dZujNYQ1d6ojSbBhpHO-6-ik89DYG_vfa5-HN_9_t2lW-eHta3y01uqkLFvOQOmZqib9pOdg0ZhYZ6bkxTqLoHrLeIIM1WtbCtVI09FgWXJUFrsE9IORc_L7p7GvTk7ZH8P-3I6tVyo8-zZB9kI9UzJvbHhZ28-3viEPXRBsNDepndKWisa4QWSlAJlRfUeBeC5_5NG0Gfk9YHfU1an5PWUJ1PpcVfl0VOpp8tex2M5dFwZz2bqDtn35P4Dwf-ihI</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jaulin, Luc</creator><creator>Desrochers, Benoît</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0938-0615</orcidid></search><sort><creationdate>20140801</creationdate><title>Introduction to the algebra of separators with application to path planning</title><author>Jaulin, Luc ; Desrochers, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Automatic</topic><topic>Contractors</topic><topic>Engineering Sciences</topic><topic>Expert systems</topic><topic>Interval analysis</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Path planning</topic><topic>Separators</topic><topic>Set characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaulin, Luc</creatorcontrib><creatorcontrib>Desrochers, Benoît</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaulin, Luc</au><au>Desrochers, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the algebra of separators with application to path planning</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>33</volume><spage>141</spage><epage>147</epage><pages>141-147</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2014.04.010</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0938-0615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2014-08, Vol.33, p.141-147
issn 0952-1976
1873-6769
language eng
recordid cdi_hal_primary_oai_HAL_hal_01006867v1
source Access via ScienceDirect (Elsevier)
subjects Algebra
Approximation
Automatic
Contractors
Engineering Sciences
Expert systems
Interval analysis
Intervals
Mathematical analysis
Path planning
Separators
Set characterization
title Introduction to the algebra of separators with application to path planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20algebra%20of%20separators%20with%20application%20to%20path%20planning&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Jaulin,%20Luc&rft.date=2014-08-01&rft.volume=33&rft.spage=141&rft.epage=147&rft.pages=141-147&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2014.04.010&rft_dat=%3Cproquest_hal_p%3E1551090307%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090307&rft_id=info:pmid/&rft_els_id=S0952197614000864&rfr_iscdi=true