Introduction to the algebra of separators with application to path planning
Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and pre...
Gespeichert in:
Veröffentlicht in: | Engineering applications of artificial intelligence 2014-08, Vol.33, p.141-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 141 |
container_title | Engineering applications of artificial intelligence |
container_volume | 33 |
creator | Jaulin, Luc Desrochers, Benoît |
description | Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach. |
doi_str_mv | 10.1016/j.engappai.2014.04.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01006867v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197614000864</els_id><sourcerecordid>1551090307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVpoa7br1D22B7Wmdk_0u6tJiSxiSGX9izG2llbZr3aSnJCv31lHOcaGBgYfvNm3hPiO8ICAeXNYcHjjqaJ7KIArBaQCuGDmGGjylwq2X4UM2jrIsdWyc_iSwgHACibSs7E43qM3nUnE60bs-iyuOeMhh1vPWWuzwJP5Ck6H7IXG_dZujNYQ1d6ojSbBhpHO-6-ik89DYG_vfa5-HN_9_t2lW-eHta3y01uqkLFvOQOmZqib9pOdg0ZhYZ6bkxTqLoHrLeIIM1WtbCtVI09FgWXJUFrsE9IORc_L7p7GvTk7ZH8P-3I6tVyo8-zZB9kI9UzJvbHhZ28-3viEPXRBsNDepndKWisa4QWSlAJlRfUeBeC5_5NG0Gfk9YHfU1an5PWUJ1PpcVfl0VOpp8tex2M5dFwZz2bqDtn35P4Dwf-ihI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090307</pqid></control><display><type>article</type><title>Introduction to the algebra of separators with application to path planning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jaulin, Luc ; Desrochers, Benoît</creator><creatorcontrib>Jaulin, Luc ; Desrochers, Benoît</creatorcontrib><description>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2014.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Approximation ; Automatic ; Contractors ; Engineering Sciences ; Expert systems ; Interval analysis ; Intervals ; Mathematical analysis ; Path planning ; Separators ; Set characterization</subject><ispartof>Engineering applications of artificial intelligence, 2014-08, Vol.33, p.141-147</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</citedby><cites>FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</cites><orcidid>0000-0002-0938-0615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2014.04.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01006867$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaulin, Luc</creatorcontrib><creatorcontrib>Desrochers, Benoît</creatorcontrib><title>Introduction to the algebra of separators with application to path planning</title><title>Engineering applications of artificial intelligence</title><description>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Automatic</subject><subject>Contractors</subject><subject>Engineering Sciences</subject><subject>Expert systems</subject><subject>Interval analysis</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Path planning</subject><subject>Separators</subject><subject>Set characterization</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVpoa7br1D22B7Wmdk_0u6tJiSxiSGX9izG2llbZr3aSnJCv31lHOcaGBgYfvNm3hPiO8ICAeXNYcHjjqaJ7KIArBaQCuGDmGGjylwq2X4UM2jrIsdWyc_iSwgHACibSs7E43qM3nUnE60bs-iyuOeMhh1vPWWuzwJP5Ck6H7IXG_dZujNYQ1d6ojSbBhpHO-6-ik89DYG_vfa5-HN_9_t2lW-eHta3y01uqkLFvOQOmZqib9pOdg0ZhYZ6bkxTqLoHrLeIIM1WtbCtVI09FgWXJUFrsE9IORc_L7p7GvTk7ZH8P-3I6tVyo8-zZB9kI9UzJvbHhZ28-3viEPXRBsNDepndKWisa4QWSlAJlRfUeBeC5_5NG0Gfk9YHfU1an5PWUJ1PpcVfl0VOpp8tex2M5dFwZz2bqDtn35P4Dwf-ihI</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jaulin, Luc</creator><creator>Desrochers, Benoît</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0938-0615</orcidid></search><sort><creationdate>20140801</creationdate><title>Introduction to the algebra of separators with application to path planning</title><author>Jaulin, Luc ; Desrochers, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3ed1ea82f89d6d8ac71cafe8c8275f015b1106cb790b4751f122e33a09c1f2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Automatic</topic><topic>Contractors</topic><topic>Engineering Sciences</topic><topic>Expert systems</topic><topic>Interval analysis</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Path planning</topic><topic>Separators</topic><topic>Set characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaulin, Luc</creatorcontrib><creatorcontrib>Desrochers, Benoît</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaulin, Luc</au><au>Desrochers, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the algebra of separators with application to path planning</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>33</volume><spage>141</spage><epage>147</epage><pages>141-147</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Contractor algebra is a numerical tool based on interval analysis which makes it possible to solve many nonlinear problems arising in robotics, such as identification, path planning or robust control. This paper presents a new notion of separators which is a pair of complementary contractors and presents the corresponding algebra. Using separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach. A path planning problem will then be considered in order to illustrate the principle of the approach.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2014.04.010</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0938-0615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2014-08, Vol.33, p.141-147 |
issn | 0952-1976 1873-6769 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01006867v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algebra Approximation Automatic Contractors Engineering Sciences Expert systems Interval analysis Intervals Mathematical analysis Path planning Separators Set characterization |
title | Introduction to the algebra of separators with application to path planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20algebra%20of%20separators%20with%20application%20to%20path%20planning&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Jaulin,%20Luc&rft.date=2014-08-01&rft.volume=33&rft.spage=141&rft.epage=147&rft.pages=141-147&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2014.04.010&rft_dat=%3Cproquest_hal_p%3E1551090307%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090307&rft_id=info:pmid/&rft_els_id=S0952197614000864&rfr_iscdi=true |