A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework,...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2006-12, Vol.139 (3), p.153-176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 3 |
container_start_page | 153 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 139 |
creator | Ammar, A. Mokdad, B. Chinesta, F. Keunings, R. |
description | Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables. |
doi_str_mv | 10.1016/j.jnnfm.2006.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01004909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025706001662</els_id><sourcerecordid>29473353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</originalsourceid><addsrcrecordid>eNp9Uc2OFCEQJkYTx9Un8MLJxEO30AzQc_Aw2ahrMokXPRMaCpeRn1noHp338IGld4xHuRTF91MpPoReU9JTQsW7Y39MycV-IET0RPaEyCdoQ0fJukEw-hRtCJOyIwOXz9GLWo-kHc7EBv3e4wQ_sdPRhwvODtcczlAqdrm0ewRsgq4V6orFJcze-gip-px0wCddZt-q9c5BgfTYwMOi54ZXDMnkJc0Nsdgn_MMnmL3B8z3kcsExWwg-fV-dTY6nAL-wC4u39SV65nSo8OpvvUHfPn74envXHb58-ny7P3SGUzF3UhDNYaRST0wPwKkWdHLSMcbdOI07O-nBtZ6bLRgjgY12EgNhXFjHB63ZDXp79b3XQZ2Kj7pcVNZe3e0Pan0jlJDtjuzOtHHfXLmnkh8WqLOKvhoIQSfIS1XDbivbYNaI7Eo0JddawP1zpkStaamjekxLrWkpIlVLq6neX1XQ9j17KKoa3_4PrC9gZmWz_6_-D94ooxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29473353</pqid></control><display><type>article</type><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</creator><creatorcontrib>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</creatorcontrib><description>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2006.07.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complex fluids ; Engineering Sciences ; Fluids mechanics ; Kinetic theory ; Mechanics ; Model reduction ; Multidimensional problems ; Numerical modeling ; Separation of variables</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.153-176</ispartof><rights>2006 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</citedby><cites>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</cites><orcidid>0000-0002-6272-3429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2006.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01004909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammar, A.</creatorcontrib><creatorcontrib>Mokdad, B.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Keunings, R.</creatorcontrib><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><title>Journal of non-Newtonian fluid mechanics</title><description>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</description><subject>Complex fluids</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Kinetic theory</subject><subject>Mechanics</subject><subject>Model reduction</subject><subject>Multidimensional problems</subject><subject>Numerical modeling</subject><subject>Separation of variables</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9Uc2OFCEQJkYTx9Un8MLJxEO30AzQc_Aw2ahrMokXPRMaCpeRn1noHp338IGld4xHuRTF91MpPoReU9JTQsW7Y39MycV-IET0RPaEyCdoQ0fJukEw-hRtCJOyIwOXz9GLWo-kHc7EBv3e4wQ_sdPRhwvODtcczlAqdrm0ewRsgq4V6orFJcze-gip-px0wCddZt-q9c5BgfTYwMOi54ZXDMnkJc0Nsdgn_MMnmL3B8z3kcsExWwg-fV-dTY6nAL-wC4u39SV65nSo8OpvvUHfPn74envXHb58-ny7P3SGUzF3UhDNYaRST0wPwKkWdHLSMcbdOI07O-nBtZ6bLRgjgY12EgNhXFjHB63ZDXp79b3XQZ2Kj7pcVNZe3e0Pan0jlJDtjuzOtHHfXLmnkh8WqLOKvhoIQSfIS1XDbivbYNaI7Eo0JddawP1zpkStaamjekxLrWkpIlVLq6neX1XQ9j17KKoa3_4PrC9gZmWz_6_-D94ooxU</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Ammar, A.</creator><creator>Mokdad, B.</creator><creator>Chinesta, F.</creator><creator>Keunings, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid></search><sort><creationdate>20061201</creationdate><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><author>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Complex fluids</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Kinetic theory</topic><topic>Mechanics</topic><topic>Model reduction</topic><topic>Multidimensional problems</topic><topic>Numerical modeling</topic><topic>Separation of variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, A.</creatorcontrib><creatorcontrib>Mokdad, B.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Keunings, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, A.</au><au>Mokdad, B.</au><au>Chinesta, F.</au><au>Keunings, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>139</volume><issue>3</issue><spage>153</spage><epage>176</epage><pages>153-176</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2006.07.007</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.153-176 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01004909v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Complex fluids Engineering Sciences Fluids mechanics Kinetic theory Mechanics Model reduction Multidimensional problems Numerical modeling Separation of variables |
title | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20family%20of%20solvers%20for%20some%20classes%20of%20multidimensional%20partial%20differential%20equations%20encountered%20in%20kinetic%20theory%20modeling%20of%20complex%20fluids&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Ammar,%20A.&rft.date=2006-12-01&rft.volume=139&rft.issue=3&rft.spage=153&rft.epage=176&rft.pages=153-176&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2006.07.007&rft_dat=%3Cproquest_hal_p%3E29473353%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29473353&rft_id=info:pmid/&rft_els_id=S0377025706001662&rfr_iscdi=true |