A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids

Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2006-12, Vol.139 (3), p.153-176
Hauptverfasser: Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 3
container_start_page 153
container_title Journal of non-Newtonian fluid mechanics
container_volume 139
creator Ammar, A.
Mokdad, B.
Chinesta, F.
Keunings, R.
description Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.
doi_str_mv 10.1016/j.jnnfm.2006.07.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01004909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025706001662</els_id><sourcerecordid>29473353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</originalsourceid><addsrcrecordid>eNp9Uc2OFCEQJkYTx9Un8MLJxEO30AzQc_Aw2ahrMokXPRMaCpeRn1noHp338IGld4xHuRTF91MpPoReU9JTQsW7Y39MycV-IET0RPaEyCdoQ0fJukEw-hRtCJOyIwOXz9GLWo-kHc7EBv3e4wQ_sdPRhwvODtcczlAqdrm0ewRsgq4V6orFJcze-gip-px0wCddZt-q9c5BgfTYwMOi54ZXDMnkJc0Nsdgn_MMnmL3B8z3kcsExWwg-fV-dTY6nAL-wC4u39SV65nSo8OpvvUHfPn74envXHb58-ny7P3SGUzF3UhDNYaRST0wPwKkWdHLSMcbdOI07O-nBtZ6bLRgjgY12EgNhXFjHB63ZDXp79b3XQZ2Kj7pcVNZe3e0Pan0jlJDtjuzOtHHfXLmnkh8WqLOKvhoIQSfIS1XDbivbYNaI7Eo0JddawP1zpkStaamjekxLrWkpIlVLq6neX1XQ9j17KKoa3_4PrC9gZmWz_6_-D94ooxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29473353</pqid></control><display><type>article</type><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</creator><creatorcontrib>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</creatorcontrib><description>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2006.07.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complex fluids ; Engineering Sciences ; Fluids mechanics ; Kinetic theory ; Mechanics ; Model reduction ; Multidimensional problems ; Numerical modeling ; Separation of variables</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.153-176</ispartof><rights>2006 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</citedby><cites>FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</cites><orcidid>0000-0002-6272-3429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2006.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01004909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammar, A.</creatorcontrib><creatorcontrib>Mokdad, B.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Keunings, R.</creatorcontrib><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><title>Journal of non-Newtonian fluid mechanics</title><description>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</description><subject>Complex fluids</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Kinetic theory</subject><subject>Mechanics</subject><subject>Model reduction</subject><subject>Multidimensional problems</subject><subject>Numerical modeling</subject><subject>Separation of variables</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9Uc2OFCEQJkYTx9Un8MLJxEO30AzQc_Aw2ahrMokXPRMaCpeRn1noHp338IGld4xHuRTF91MpPoReU9JTQsW7Y39MycV-IET0RPaEyCdoQ0fJukEw-hRtCJOyIwOXz9GLWo-kHc7EBv3e4wQ_sdPRhwvODtcczlAqdrm0ewRsgq4V6orFJcze-gip-px0wCddZt-q9c5BgfTYwMOi54ZXDMnkJc0Nsdgn_MMnmL3B8z3kcsExWwg-fV-dTY6nAL-wC4u39SV65nSo8OpvvUHfPn74envXHb58-ny7P3SGUzF3UhDNYaRST0wPwKkWdHLSMcbdOI07O-nBtZ6bLRgjgY12EgNhXFjHB63ZDXp79b3XQZ2Kj7pcVNZe3e0Pan0jlJDtjuzOtHHfXLmnkh8WqLOKvhoIQSfIS1XDbivbYNaI7Eo0JddawP1zpkStaamjekxLrWkpIlVLq6neX1XQ9j17KKoa3_4PrC9gZmWz_6_-D94ooxU</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Ammar, A.</creator><creator>Mokdad, B.</creator><creator>Chinesta, F.</creator><creator>Keunings, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid></search><sort><creationdate>20061201</creationdate><title>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</title><author>Ammar, A. ; Mokdad, B. ; Chinesta, F. ; Keunings, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-760a5e817ab3a2e51a61bf7f335f8b89dba2ff7f5c4ecc7e38db620356df52aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Complex fluids</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Kinetic theory</topic><topic>Mechanics</topic><topic>Model reduction</topic><topic>Multidimensional problems</topic><topic>Numerical modeling</topic><topic>Separation of variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, A.</creatorcontrib><creatorcontrib>Mokdad, B.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Keunings, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, A.</au><au>Mokdad, B.</au><au>Chinesta, F.</au><au>Keunings, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>139</volume><issue>3</issue><spage>153</spage><epage>176</epage><pages>153-176</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2006.07.007</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2006-12, Vol.139 (3), p.153-176
issn 0377-0257
1873-2631
language eng
recordid cdi_hal_primary_oai_HAL_hal_01004909v1
source ScienceDirect Journals (5 years ago - present)
subjects Complex fluids
Engineering Sciences
Fluids mechanics
Kinetic theory
Mechanics
Model reduction
Multidimensional problems
Numerical modeling
Separation of variables
title A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20family%20of%20solvers%20for%20some%20classes%20of%20multidimensional%20partial%20differential%20equations%20encountered%20in%20kinetic%20theory%20modeling%20of%20complex%20fluids&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Ammar,%20A.&rft.date=2006-12-01&rft.volume=139&rft.issue=3&rft.spage=153&rft.epage=176&rft.pages=153-176&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2006.07.007&rft_dat=%3Cproquest_hal_p%3E29473353%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29473353&rft_id=info:pmid/&rft_els_id=S0377025706001662&rfr_iscdi=true