How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates

In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2011-07, Vol.91 (1), p.123-131
Hauptverfasser: Galli, Carlo, Gentili, Patrizia, Jolivalt, Claude, Madzak, Catherine, Vadalà, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 123
container_title Applied microbiology and biotechnology
container_volume 91
creator Galli, Carlo
Gentili, Patrizia
Jolivalt, Claude
Madzak, Catherine
Vadalà, Raffaella
description In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.
doi_str_mv 10.1007/s00253-011-3240-4
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01004562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617043766</galeid><sourcerecordid>A617043766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</originalsourceid><addsrcrecordid>eNp1kl2L1DAUhoso7rj6A7yRoIjsRdd8NW2vZFhWZ2FA8OM6pGkym6VtxiSddf6Iv9dTOs4yoslFIHnek5w3b5a9JPiSYFy-jxjTguWYkJxRjnP-KFsQzmiOBeGPswUmZZGXRV2dZc9ivMOY0EqIp9kZJVxUJWaL7NfK3yMXUbo1KBilk9u5tEfeok5praJBylqjk2lRs0fRDZvO5FvvhoT6Mank_BA_oOth4wZjAhwfddYH5Ppt8DvQHgsnf69CG1FMQGvVdXvUml4N7SSNYxNTUMnE59kTq7poXhzW8-z7x-tvV6t8_fnTzdVynetClCmnmlJiaGMawYqmbWBQ2-ha1FQx1mJW0LYCZyxlTcUrTIqCFoYrywAXNWPn2cVc91Z1chtcr8JeeuXkarmW0x4Go3kh6I4A-25moacfo4lJ9i5q03VqMH6MsioF5ZTRiXz9F3nnxzBAIwDBG0hdUoDezNBGdUa6wXpoXU8l5VKQEnNWCgHU5T8omOCa034w1sH-ieDiRABMMj_TRo0xypuvX05ZMrM6-BiDsUcLCJZTwuScMHCByClhkoPm1aG3selNe1T8iRQAbw-AivDBNqhBu_jAcVqKkk2X05mL2yk3JjyY9P_bfwPMvOc1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871551972</pqid></control><display><type>article</type><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</creator><creatorcontrib>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</creatorcontrib><description>In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-011-3240-4</identifier><identifier>PMID: 21468703</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural sciences ; Amino Acid Sequence ; Binding Sites ; Bioengineering ; Biological and medical sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Bisphenol A ; Copper ; Crystal structure ; Crystals ; Dioxane ; Efficiency ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Gene Expression ; Gene mutations ; Genetic aspects ; Internet ; Kinetics ; Laccase - chemistry ; Laccase - genetics ; Laccase - metabolism ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutants ; Mutation ; Oxidases ; Oxidation ; Phenols ; Phenols - chemistry ; Phenols - metabolism ; Phenylalanine ; Point Mutation ; Protein Engineering ; Stereoisomerism ; Structure ; Studies ; Substrate Specificity ; Substrates ; Trametes - enzymology ; Trametes versicolor ; Yarrowia - genetics ; Yarrowia - metabolism ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2011-07, Vol.91 (1), p.123-131</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</citedby><cites>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</cites><orcidid>0000-0002-1413-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-011-3240-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-011-3240-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24276736$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21468703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01004562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galli, Carlo</creatorcontrib><creatorcontrib>Gentili, Patrizia</creatorcontrib><creatorcontrib>Jolivalt, Claude</creatorcontrib><creatorcontrib>Madzak, Catherine</creatorcontrib><creatorcontrib>Vadalà, Raffaella</creatorcontrib><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</description><subject>Agricultural sciences</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Bisphenol A</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dioxane</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene Expression</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Internet</subject><subject>Kinetics</subject><subject>Laccase - chemistry</subject><subject>Laccase - genetics</subject><subject>Laccase - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Phenols - chemistry</subject><subject>Phenols - metabolism</subject><subject>Phenylalanine</subject><subject>Point Mutation</subject><subject>Protein Engineering</subject><subject>Stereoisomerism</subject><subject>Structure</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Trametes - enzymology</subject><subject>Trametes versicolor</subject><subject>Yarrowia - genetics</subject><subject>Yarrowia - metabolism</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl2L1DAUhoso7rj6A7yRoIjsRdd8NW2vZFhWZ2FA8OM6pGkym6VtxiSddf6Iv9dTOs4yoslFIHnek5w3b5a9JPiSYFy-jxjTguWYkJxRjnP-KFsQzmiOBeGPswUmZZGXRV2dZc9ivMOY0EqIp9kZJVxUJWaL7NfK3yMXUbo1KBilk9u5tEfeok5praJBylqjk2lRs0fRDZvO5FvvhoT6Mank_BA_oOth4wZjAhwfddYH5Ppt8DvQHgsnf69CG1FMQGvVdXvUml4N7SSNYxNTUMnE59kTq7poXhzW8-z7x-tvV6t8_fnTzdVynetClCmnmlJiaGMawYqmbWBQ2-ha1FQx1mJW0LYCZyxlTcUrTIqCFoYrywAXNWPn2cVc91Z1chtcr8JeeuXkarmW0x4Go3kh6I4A-25moacfo4lJ9i5q03VqMH6MsioF5ZTRiXz9F3nnxzBAIwDBG0hdUoDezNBGdUa6wXpoXU8l5VKQEnNWCgHU5T8omOCa034w1sH-ieDiRABMMj_TRo0xypuvX05ZMrM6-BiDsUcLCJZTwuScMHCByClhkoPm1aG3selNe1T8iRQAbw-AivDBNqhBu_jAcVqKkk2X05mL2yk3JjyY9P_bfwPMvOc1</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Galli, Carlo</creator><creator>Gentili, Patrizia</creator><creator>Jolivalt, Claude</creator><creator>Madzak, Catherine</creator><creator>Vadalà, Raffaella</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1413-0602</orcidid></search><sort><creationdate>20110701</creationdate><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><author>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural sciences</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Bisphenol A</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dioxane</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene Expression</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Internet</topic><topic>Kinetics</topic><topic>Laccase - chemistry</topic><topic>Laccase - genetics</topic><topic>Laccase - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Phenols - chemistry</topic><topic>Phenols - metabolism</topic><topic>Phenylalanine</topic><topic>Point Mutation</topic><topic>Protein Engineering</topic><topic>Stereoisomerism</topic><topic>Structure</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Trametes - enzymology</topic><topic>Trametes versicolor</topic><topic>Yarrowia - genetics</topic><topic>Yarrowia - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galli, Carlo</creatorcontrib><creatorcontrib>Gentili, Patrizia</creatorcontrib><creatorcontrib>Jolivalt, Claude</creatorcontrib><creatorcontrib>Madzak, Catherine</creatorcontrib><creatorcontrib>Vadalà, Raffaella</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galli, Carlo</au><au>Gentili, Patrizia</au><au>Jolivalt, Claude</au><au>Madzak, Catherine</au><au>Vadalà, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>91</volume><issue>1</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>21468703</pmid><doi>10.1007/s00253-011-3240-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1413-0602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2011-07, Vol.91 (1), p.123-131
issn 0175-7598
1432-0614
language eng
recordid cdi_hal_primary_oai_HAL_hal_01004562v1
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agricultural sciences
Amino Acid Sequence
Binding Sites
Bioengineering
Biological and medical sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Bisphenol A
Copper
Crystal structure
Crystals
Dioxane
Efficiency
Enzymes
Fundamental and applied biological sciences. Psychology
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi
Gene Expression
Gene mutations
Genetic aspects
Internet
Kinetics
Laccase - chemistry
Laccase - genetics
Laccase - metabolism
Life Sciences
Microbial Genetics and Genomics
Microbiology
Models, Molecular
Molecular Sequence Data
Mutagenesis
Mutagenesis, Site-Directed
Mutants
Mutation
Oxidases
Oxidation
Phenols
Phenols - chemistry
Phenols - metabolism
Phenylalanine
Point Mutation
Protein Engineering
Stereoisomerism
Structure
Studies
Substrate Specificity
Substrates
Trametes - enzymology
Trametes versicolor
Yarrowia - genetics
Yarrowia - metabolism
Yeast
title How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20is%20the%20reactivity%20of%20laccase%20affected%20by%20single-point%20mutations?%20Engineering%20laccase%20for%20improved%20activity%20towards%20sterically%20demanding%20substrates&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Galli,%20Carlo&rft.date=2011-07-01&rft.volume=91&rft.issue=1&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-011-3240-4&rft_dat=%3Cgale_hal_p%3EA617043766%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871551972&rft_id=info:pmid/21468703&rft_galeid=A617043766&rfr_iscdi=true