How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates
In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2011-07, Vol.91 (1), p.123-131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Applied microbiology and biotechnology |
container_volume | 91 |
creator | Galli, Carlo Gentili, Patrizia Jolivalt, Claude Madzak, Catherine Vadalà, Raffaella |
description | In spite of its broad specificity among phenols,
Trametes versicolor
laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated. |
doi_str_mv | 10.1007/s00253-011-3240-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01004562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617043766</galeid><sourcerecordid>A617043766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</originalsourceid><addsrcrecordid>eNp1kl2L1DAUhoso7rj6A7yRoIjsRdd8NW2vZFhWZ2FA8OM6pGkym6VtxiSddf6Iv9dTOs4yoslFIHnek5w3b5a9JPiSYFy-jxjTguWYkJxRjnP-KFsQzmiOBeGPswUmZZGXRV2dZc9ivMOY0EqIp9kZJVxUJWaL7NfK3yMXUbo1KBilk9u5tEfeok5praJBylqjk2lRs0fRDZvO5FvvhoT6Mank_BA_oOth4wZjAhwfddYH5Ppt8DvQHgsnf69CG1FMQGvVdXvUml4N7SSNYxNTUMnE59kTq7poXhzW8-z7x-tvV6t8_fnTzdVynetClCmnmlJiaGMawYqmbWBQ2-ha1FQx1mJW0LYCZyxlTcUrTIqCFoYrywAXNWPn2cVc91Z1chtcr8JeeuXkarmW0x4Go3kh6I4A-25moacfo4lJ9i5q03VqMH6MsioF5ZTRiXz9F3nnxzBAIwDBG0hdUoDezNBGdUa6wXpoXU8l5VKQEnNWCgHU5T8omOCa034w1sH-ieDiRABMMj_TRo0xypuvX05ZMrM6-BiDsUcLCJZTwuScMHCByClhkoPm1aG3selNe1T8iRQAbw-AivDBNqhBu_jAcVqKkk2X05mL2yk3JjyY9P_bfwPMvOc1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871551972</pqid></control><display><type>article</type><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</creator><creatorcontrib>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</creatorcontrib><description>In spite of its broad specificity among phenols,
Trametes versicolor
laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-011-3240-4</identifier><identifier>PMID: 21468703</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural sciences ; Amino Acid Sequence ; Binding Sites ; Bioengineering ; Biological and medical sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Bisphenol A ; Copper ; Crystal structure ; Crystals ; Dioxane ; Efficiency ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Gene Expression ; Gene mutations ; Genetic aspects ; Internet ; Kinetics ; Laccase - chemistry ; Laccase - genetics ; Laccase - metabolism ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutants ; Mutation ; Oxidases ; Oxidation ; Phenols ; Phenols - chemistry ; Phenols - metabolism ; Phenylalanine ; Point Mutation ; Protein Engineering ; Stereoisomerism ; Structure ; Studies ; Substrate Specificity ; Substrates ; Trametes - enzymology ; Trametes versicolor ; Yarrowia - genetics ; Yarrowia - metabolism ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2011-07, Vol.91 (1), p.123-131</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</citedby><cites>FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</cites><orcidid>0000-0002-1413-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-011-3240-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-011-3240-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24276736$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21468703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01004562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galli, Carlo</creatorcontrib><creatorcontrib>Gentili, Patrizia</creatorcontrib><creatorcontrib>Jolivalt, Claude</creatorcontrib><creatorcontrib>Madzak, Catherine</creatorcontrib><creatorcontrib>Vadalà, Raffaella</creatorcontrib><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In spite of its broad specificity among phenols,
Trametes versicolor
laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</description><subject>Agricultural sciences</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Bisphenol A</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dioxane</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene Expression</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Internet</subject><subject>Kinetics</subject><subject>Laccase - chemistry</subject><subject>Laccase - genetics</subject><subject>Laccase - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Phenols - chemistry</subject><subject>Phenols - metabolism</subject><subject>Phenylalanine</subject><subject>Point Mutation</subject><subject>Protein Engineering</subject><subject>Stereoisomerism</subject><subject>Structure</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Trametes - enzymology</subject><subject>Trametes versicolor</subject><subject>Yarrowia - genetics</subject><subject>Yarrowia - metabolism</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl2L1DAUhoso7rj6A7yRoIjsRdd8NW2vZFhWZ2FA8OM6pGkym6VtxiSddf6Iv9dTOs4yoslFIHnek5w3b5a9JPiSYFy-jxjTguWYkJxRjnP-KFsQzmiOBeGPswUmZZGXRV2dZc9ivMOY0EqIp9kZJVxUJWaL7NfK3yMXUbo1KBilk9u5tEfeok5praJBylqjk2lRs0fRDZvO5FvvhoT6Mank_BA_oOth4wZjAhwfddYH5Ppt8DvQHgsnf69CG1FMQGvVdXvUml4N7SSNYxNTUMnE59kTq7poXhzW8-z7x-tvV6t8_fnTzdVynetClCmnmlJiaGMawYqmbWBQ2-ha1FQx1mJW0LYCZyxlTcUrTIqCFoYrywAXNWPn2cVc91Z1chtcr8JeeuXkarmW0x4Go3kh6I4A-25moacfo4lJ9i5q03VqMH6MsioF5ZTRiXz9F3nnxzBAIwDBG0hdUoDezNBGdUa6wXpoXU8l5VKQEnNWCgHU5T8omOCa034w1sH-ieDiRABMMj_TRo0xypuvX05ZMrM6-BiDsUcLCJZTwuScMHCByClhkoPm1aG3selNe1T8iRQAbw-AivDBNqhBu_jAcVqKkk2X05mL2yk3JjyY9P_bfwPMvOc1</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Galli, Carlo</creator><creator>Gentili, Patrizia</creator><creator>Jolivalt, Claude</creator><creator>Madzak, Catherine</creator><creator>Vadalà, Raffaella</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1413-0602</orcidid></search><sort><creationdate>20110701</creationdate><title>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</title><author>Galli, Carlo ; Gentili, Patrizia ; Jolivalt, Claude ; Madzak, Catherine ; Vadalà, Raffaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-2c221e2beb635bdbbbb2fbc9692a33d0352d8240f23b848015525e4af335b6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural sciences</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Bisphenol A</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dioxane</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene Expression</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Internet</topic><topic>Kinetics</topic><topic>Laccase - chemistry</topic><topic>Laccase - genetics</topic><topic>Laccase - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Phenols - chemistry</topic><topic>Phenols - metabolism</topic><topic>Phenylalanine</topic><topic>Point Mutation</topic><topic>Protein Engineering</topic><topic>Stereoisomerism</topic><topic>Structure</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Trametes - enzymology</topic><topic>Trametes versicolor</topic><topic>Yarrowia - genetics</topic><topic>Yarrowia - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galli, Carlo</creatorcontrib><creatorcontrib>Gentili, Patrizia</creatorcontrib><creatorcontrib>Jolivalt, Claude</creatorcontrib><creatorcontrib>Madzak, Catherine</creatorcontrib><creatorcontrib>Vadalà, Raffaella</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galli, Carlo</au><au>Gentili, Patrizia</au><au>Jolivalt, Claude</au><au>Madzak, Catherine</au><au>Vadalà, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>91</volume><issue>1</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>In spite of its broad specificity among phenols,
Trametes versicolor
laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>21468703</pmid><doi>10.1007/s00253-011-3240-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1413-0602</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2011-07, Vol.91 (1), p.123-131 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01004562v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agricultural sciences Amino Acid Sequence Binding Sites Bioengineering Biological and medical sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology Bisphenol A Copper Crystal structure Crystals Dioxane Efficiency Enzymes Fundamental and applied biological sciences. Psychology Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Gene Expression Gene mutations Genetic aspects Internet Kinetics Laccase - chemistry Laccase - genetics Laccase - metabolism Life Sciences Microbial Genetics and Genomics Microbiology Models, Molecular Molecular Sequence Data Mutagenesis Mutagenesis, Site-Directed Mutants Mutation Oxidases Oxidation Phenols Phenols - chemistry Phenols - metabolism Phenylalanine Point Mutation Protein Engineering Stereoisomerism Structure Studies Substrate Specificity Substrates Trametes - enzymology Trametes versicolor Yarrowia - genetics Yarrowia - metabolism Yeast |
title | How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20is%20the%20reactivity%20of%20laccase%20affected%20by%20single-point%20mutations?%20Engineering%20laccase%20for%20improved%20activity%20towards%20sterically%20demanding%20substrates&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Galli,%20Carlo&rft.date=2011-07-01&rft.volume=91&rft.issue=1&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-011-3240-4&rft_dat=%3Cgale_hal_p%3EA617043766%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871551972&rft_id=info:pmid/21468703&rft_galeid=A617043766&rfr_iscdi=true |