Scalable templated growth of graphene nanoribbons on SiC

In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap 1 , 2 , 3 , 4 . Quantum confinement effects can create a bandgap in graphene nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2010-10, Vol.5 (10), p.727-731
Hauptverfasser: Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 10
container_start_page 727
container_title Nature nanotechnology
container_volume 5
creator Sprinkle, M.
Ruan, M.
Hu, Y.
Hankinson, J.
Rubio-Roy, M.
Zhang, B.
Wu, X.
Berger, C.
de Heer, W. A.
description In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap 1 , 2 , 3 , 4 . Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties 2 , 3 , 4 . Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on–off ratio of 10 and carrier mobilities up to 2,700 cm 2  V −1  s −1 at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24‐cm 2 SiC chip, which is the largest density of graphene devices reported to date. Graphene nanoribbons with a room-temperature bandgap have been grown on templated silicon carbide substrates at high density without the need for etching.
doi_str_mv 10.1038/nnano.2010.192
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01002912v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>756822590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cb64ae109494dcbd479c5ecb31e640690eb399941e16220e43a17b3862adf0983</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoVqtXj7J4EQ9t87W7ybEUtULBQ_Uckt1pu2Wb1GSr-N-bdWsFwVMmM795j3kIXRE8JJiJkbXauiHF7V_SI3RGci4GjMn0-FCLvIfOQ1hjnFJJ-SnqUSwkpjk7Q2Je6FqbGpIGNttaN1AmS-8-mlXiFrHS2xVYSFoXXxnjbEicTebV5AKdLHQd4HL_9tHrw_3LZDqYPT8-TcazQcFZ2gwKk3ENBEsueVmYkueySKEwjEDGcSYxGCal5ARIRikGzjTJDRMZ1eUCS8H66K7TXelabX210f5TOV2p6Xim2l48HVNJ6DuJ7G3Hbr1720Fo1KYKBdS1tuB2QeVpJihNJY7kzR9y7XbexkOUyASTjOIsQsMOKrwLwcPi4E-watNX3-mrNn0V048L13vVndlAecB_4o7AqANCHNkl-F_bfyS_AB9gjZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868393206</pqid></control><display><type>article</type><title>Scalable templated growth of graphene nanoribbons on SiC</title><source>SpringerLink Journals</source><source>Nature</source><creator>Sprinkle, M. ; Ruan, M. ; Hu, Y. ; Hankinson, J. ; Rubio-Roy, M. ; Zhang, B. ; Wu, X. ; Berger, C. ; de Heer, W. A.</creator><creatorcontrib>Sprinkle, M. ; Ruan, M. ; Hu, Y. ; Hankinson, J. ; Rubio-Roy, M. ; Zhang, B. ; Wu, X. ; Berger, C. ; de Heer, W. A.</creatorcontrib><description>In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap 1 , 2 , 3 , 4 . Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties 2 , 3 , 4 . Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on–off ratio of 10 and carrier mobilities up to 2,700 cm 2  V −1  s −1 at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24‐cm 2 SiC chip, which is the largest density of graphene devices reported to date. Graphene nanoribbons with a room-temperature bandgap have been grown on templated silicon carbide substrates at high density without the need for etching.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.192</identifier><identifier>PMID: 20890273</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/350/2093 ; 639/925/350/2251 ; 639/925/357/551 ; 639/925/357/918/1052 ; Chemistry and Materials Science ; Condensed Matter ; Electrons ; Fabrication ; Graphene ; letter ; Low temperature ; Materials Science ; Mesoscopic Systems and Quantum Hall Effect ; Microscopy ; Nanotechnology ; Nanotechnology and Microengineering ; Physics ; Prototypes ; Silicon ; Spectroscopy ; Substrates ; Temperature ; Transistors</subject><ispartof>Nature nanotechnology, 2010-10, Vol.5 (10), p.727-731</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cb64ae109494dcbd479c5ecb31e640690eb399941e16220e43a17b3862adf0983</citedby><cites>FETCH-LOGICAL-c435t-cb64ae109494dcbd479c5ecb31e640690eb399941e16220e43a17b3862adf0983</cites><orcidid>0000-0002-4552-3150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.192$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.192$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20890273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01002912$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprinkle, M.</creatorcontrib><creatorcontrib>Ruan, M.</creatorcontrib><creatorcontrib>Hu, Y.</creatorcontrib><creatorcontrib>Hankinson, J.</creatorcontrib><creatorcontrib>Rubio-Roy, M.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Wu, X.</creatorcontrib><creatorcontrib>Berger, C.</creatorcontrib><creatorcontrib>de Heer, W. A.</creatorcontrib><title>Scalable templated growth of graphene nanoribbons on SiC</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap 1 , 2 , 3 , 4 . Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties 2 , 3 , 4 . Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on–off ratio of 10 and carrier mobilities up to 2,700 cm 2  V −1  s −1 at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24‐cm 2 SiC chip, which is the largest density of graphene devices reported to date. Graphene nanoribbons with a room-temperature bandgap have been grown on templated silicon carbide substrates at high density without the need for etching.</description><subject>639/925/350/2093</subject><subject>639/925/350/2251</subject><subject>639/925/357/551</subject><subject>639/925/357/918/1052</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter</subject><subject>Electrons</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>letter</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Silicon</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoVqtXj7J4EQ9t87W7ybEUtULBQ_Uckt1pu2Wb1GSr-N-bdWsFwVMmM795j3kIXRE8JJiJkbXauiHF7V_SI3RGci4GjMn0-FCLvIfOQ1hjnFJJ-SnqUSwkpjk7Q2Je6FqbGpIGNttaN1AmS-8-mlXiFrHS2xVYSFoXXxnjbEicTebV5AKdLHQd4HL_9tHrw_3LZDqYPT8-TcazQcFZ2gwKk3ENBEsueVmYkueySKEwjEDGcSYxGCal5ARIRikGzjTJDRMZ1eUCS8H66K7TXelabX210f5TOV2p6Xim2l48HVNJ6DuJ7G3Hbr1720Fo1KYKBdS1tuB2QeVpJihNJY7kzR9y7XbexkOUyASTjOIsQsMOKrwLwcPi4E-watNX3-mrNn0V048L13vVndlAecB_4o7AqANCHNkl-F_bfyS_AB9gjZ4</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Sprinkle, M.</creator><creator>Ruan, M.</creator><creator>Hu, Y.</creator><creator>Hankinson, J.</creator><creator>Rubio-Roy, M.</creator><creator>Zhang, B.</creator><creator>Wu, X.</creator><creator>Berger, C.</creator><creator>de Heer, W. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4552-3150</orcidid></search><sort><creationdate>20101001</creationdate><title>Scalable templated growth of graphene nanoribbons on SiC</title><author>Sprinkle, M. ; Ruan, M. ; Hu, Y. ; Hankinson, J. ; Rubio-Roy, M. ; Zhang, B. ; Wu, X. ; Berger, C. ; de Heer, W. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cb64ae109494dcbd479c5ecb31e640690eb399941e16220e43a17b3862adf0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/925/350/2093</topic><topic>639/925/350/2251</topic><topic>639/925/357/551</topic><topic>639/925/357/918/1052</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter</topic><topic>Electrons</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>letter</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Silicon</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprinkle, M.</creatorcontrib><creatorcontrib>Ruan, M.</creatorcontrib><creatorcontrib>Hu, Y.</creatorcontrib><creatorcontrib>Hankinson, J.</creatorcontrib><creatorcontrib>Rubio-Roy, M.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Wu, X.</creatorcontrib><creatorcontrib>Berger, C.</creatorcontrib><creatorcontrib>de Heer, W. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprinkle, M.</au><au>Ruan, M.</au><au>Hu, Y.</au><au>Hankinson, J.</au><au>Rubio-Roy, M.</au><au>Zhang, B.</au><au>Wu, X.</au><au>Berger, C.</au><au>de Heer, W. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable templated growth of graphene nanoribbons on SiC</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>727</spage><epage>731</epage><pages>727-731</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap 1 , 2 , 3 , 4 . Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties 2 , 3 , 4 . Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on–off ratio of 10 and carrier mobilities up to 2,700 cm 2  V −1  s −1 at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24‐cm 2 SiC chip, which is the largest density of graphene devices reported to date. Graphene nanoribbons with a room-temperature bandgap have been grown on templated silicon carbide substrates at high density without the need for etching.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20890273</pmid><doi>10.1038/nnano.2010.192</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4552-3150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2010-10, Vol.5 (10), p.727-731
issn 1748-3387
1748-3395
language eng
recordid cdi_hal_primary_oai_HAL_hal_01002912v1
source SpringerLink Journals; Nature
subjects 639/925/350/2093
639/925/350/2251
639/925/357/551
639/925/357/918/1052
Chemistry and Materials Science
Condensed Matter
Electrons
Fabrication
Graphene
letter
Low temperature
Materials Science
Mesoscopic Systems and Quantum Hall Effect
Microscopy
Nanotechnology
Nanotechnology and Microengineering
Physics
Prototypes
Silicon
Spectroscopy
Substrates
Temperature
Transistors
title Scalable templated growth of graphene nanoribbons on SiC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20templated%20growth%20of%20graphene%20nanoribbons%20on%20SiC&rft.jtitle=Nature%20nanotechnology&rft.au=Sprinkle,%20M.&rft.date=2010-10-01&rft.volume=5&rft.issue=10&rft.spage=727&rft.epage=731&rft.pages=727-731&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.192&rft_dat=%3Cproquest_hal_p%3E756822590%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868393206&rft_id=info:pmid/20890273&rfr_iscdi=true