Phytochrome Regulation of Cellulose Synthesis in Arabidopsis
Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by...
Gespeichert in:
Veröffentlicht in: | Current biology 2011-11, Vol.21 (21), p.1822-1827 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 21 |
container_start_page | 1822 |
container_title | Current biology |
container_volume | 21 |
creator | Bischoff, Volker Desprez, Thierry Mouille, Gregory Vernhettes, Samantha Gonneau, Martine Höfte, Herman |
description | Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.
► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement |
doi_str_mv | 10.1016/j.cub.2011.09.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01001243v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982211010281</els_id><sourcerecordid>904012324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERZeFH8AFckMcko4_ktiil9UKaKWVqGg5W44z6XqVjRc7qbT_HkcpPXIazeiZVzMPIR8oFBRodXUo7NQUDCgtQBXAqldkRWWtchCifE1WoCrIlWTskryN8QBAmVTVG3LJGPCKynJFru_259HbffBHzH7h49Sb0fkh8122xb6feh8xuz8P4x6ji5kbsk0wjWv9KbXvyEVn-ojvn-uaPHz_9rC9yXc_f9xuN7vcipKPeamsNTVlQqESgiqjwEpeSstLUdc1tyUyaZuubmTFWFdVgEBta2VjO8FLviZflti96fUpuKMJZ-2N0zebnZ5nQOfXBH-iif28sKfg_0wYR3100aZPzIB-ilqBSChP8JrQhbTBxxiwe4mmoGe9-qCTXj3r1aB00pt2Pj6nT80R25eNfz4T8GkBOuO1eQwu6t_3KaEEAC4Fm4mvC4FJ2JPDoKN1OFhsXUA76ta7_xzwF7hskek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904012324</pqid></control><display><type>article</type><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</creator><creatorcontrib>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</creatorcontrib><description>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.
► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2011.09.026</identifier><identifier>PMID: 22036185</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Agricultural sciences ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cell Wall - metabolism ; cell walls ; cellulose ; Cellulose - metabolism ; cellulose synthase ; DNA, Complementary - genetics ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Hypocotyl - growth & development ; Hypocotyl - metabolism ; hypocotyls ; Life Sciences ; Light ; Microfibrils - metabolism ; microtubules ; Microtubules - metabolism ; mutants ; phenotype ; phosphorylation ; photoreceptors ; phytochrome ; Phytochrome B - metabolism ; plant development ; plasma membrane ; plastics ; signal transduction</subject><ispartof>Current biology, 2011-11, Vol.21 (21), p.1822-1827</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</citedby><cites>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</cites><orcidid>0000-0002-9094-8924 ; 0000-0002-5493-754X ; 0000-0002-5728-146X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2011.09.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22036185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01001243$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bischoff, Volker</creatorcontrib><creatorcontrib>Desprez, Thierry</creatorcontrib><creatorcontrib>Mouille, Gregory</creatorcontrib><creatorcontrib>Vernhettes, Samantha</creatorcontrib><creatorcontrib>Gonneau, Martine</creatorcontrib><creatorcontrib>Höfte, Herman</creatorcontrib><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.
► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</description><subject>Agricultural sciences</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell Wall - metabolism</subject><subject>cell walls</subject><subject>cellulose</subject><subject>Cellulose - metabolism</subject><subject>cellulose synthase</subject><subject>DNA, Complementary - genetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Hypocotyl - growth & development</subject><subject>Hypocotyl - metabolism</subject><subject>hypocotyls</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microfibrils - metabolism</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>mutants</subject><subject>phenotype</subject><subject>phosphorylation</subject><subject>photoreceptors</subject><subject>phytochrome</subject><subject>Phytochrome B - metabolism</subject><subject>plant development</subject><subject>plasma membrane</subject><subject>plastics</subject><subject>signal transduction</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERZeFH8AFckMcko4_ktiil9UKaKWVqGg5W44z6XqVjRc7qbT_HkcpPXIazeiZVzMPIR8oFBRodXUo7NQUDCgtQBXAqldkRWWtchCifE1WoCrIlWTskryN8QBAmVTVG3LJGPCKynJFru_259HbffBHzH7h49Sb0fkh8122xb6feh8xuz8P4x6ji5kbsk0wjWv9KbXvyEVn-ojvn-uaPHz_9rC9yXc_f9xuN7vcipKPeamsNTVlQqESgiqjwEpeSstLUdc1tyUyaZuubmTFWFdVgEBta2VjO8FLviZflti96fUpuKMJZ-2N0zebnZ5nQOfXBH-iif28sKfg_0wYR3100aZPzIB-ilqBSChP8JrQhbTBxxiwe4mmoGe9-qCTXj3r1aB00pt2Pj6nT80R25eNfz4T8GkBOuO1eQwu6t_3KaEEAC4Fm4mvC4FJ2JPDoKN1OFhsXUA76ta7_xzwF7hskek</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Bischoff, Volker</creator><creator>Desprez, Thierry</creator><creator>Mouille, Gregory</creator><creator>Vernhettes, Samantha</creator><creator>Gonneau, Martine</creator><creator>Höfte, Herman</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9094-8924</orcidid><orcidid>https://orcid.org/0000-0002-5493-754X</orcidid><orcidid>https://orcid.org/0000-0002-5728-146X</orcidid></search><sort><creationdate>20111108</creationdate><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><author>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural sciences</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell Wall - metabolism</topic><topic>cell walls</topic><topic>cellulose</topic><topic>Cellulose - metabolism</topic><topic>cellulose synthase</topic><topic>DNA, Complementary - genetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Hypocotyl - growth & development</topic><topic>Hypocotyl - metabolism</topic><topic>hypocotyls</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microfibrils - metabolism</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>mutants</topic><topic>phenotype</topic><topic>phosphorylation</topic><topic>photoreceptors</topic><topic>phytochrome</topic><topic>Phytochrome B - metabolism</topic><topic>plant development</topic><topic>plasma membrane</topic><topic>plastics</topic><topic>signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bischoff, Volker</creatorcontrib><creatorcontrib>Desprez, Thierry</creatorcontrib><creatorcontrib>Mouille, Gregory</creatorcontrib><creatorcontrib>Vernhettes, Samantha</creatorcontrib><creatorcontrib>Gonneau, Martine</creatorcontrib><creatorcontrib>Höfte, Herman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bischoff, Volker</au><au>Desprez, Thierry</au><au>Mouille, Gregory</au><au>Vernhettes, Samantha</au><au>Gonneau, Martine</au><au>Höfte, Herman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>21</volume><issue>21</issue><spage>1822</spage><epage>1827</epage><pages>1822-1827</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.
► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>22036185</pmid><doi>10.1016/j.cub.2011.09.026</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9094-8924</orcidid><orcidid>https://orcid.org/0000-0002-5493-754X</orcidid><orcidid>https://orcid.org/0000-0002-5728-146X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2011-11, Vol.21 (21), p.1822-1827 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01001243v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agricultural sciences Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cell Wall - metabolism cell walls cellulose Cellulose - metabolism cellulose synthase DNA, Complementary - genetics Gene Expression Regulation, Plant Genes, Plant Glucosyltransferases - genetics Glucosyltransferases - metabolism Hypocotyl - growth & development Hypocotyl - metabolism hypocotyls Life Sciences Light Microfibrils - metabolism microtubules Microtubules - metabolism mutants phenotype phosphorylation photoreceptors phytochrome Phytochrome B - metabolism plant development plasma membrane plastics signal transduction |
title | Phytochrome Regulation of Cellulose Synthesis in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytochrome%20Regulation%20of%20Cellulose%20Synthesis%20in%20Arabidopsis&rft.jtitle=Current%20biology&rft.au=Bischoff,%20Volker&rft.date=2011-11-08&rft.volume=21&rft.issue=21&rft.spage=1822&rft.epage=1827&rft.pages=1822-1827&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2011.09.026&rft_dat=%3Cproquest_hal_p%3E904012324%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904012324&rft_id=info:pmid/22036185&rft_els_id=S0960982211010281&rfr_iscdi=true |