Phytochrome Regulation of Cellulose Synthesis in Arabidopsis

Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2011-11, Vol.21 (21), p.1822-1827
Hauptverfasser: Bischoff, Volker, Desprez, Thierry, Mouille, Gregory, Vernhettes, Samantha, Gonneau, Martine, Höfte, Herman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 21
container_start_page 1822
container_title Current biology
container_volume 21
creator Bischoff, Volker
Desprez, Thierry
Mouille, Gregory
Vernhettes, Samantha
Gonneau, Martine
Höfte, Herman
description Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments. ► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement
doi_str_mv 10.1016/j.cub.2011.09.026
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01001243v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982211010281</els_id><sourcerecordid>904012324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERZeFH8AFckMcko4_ktiil9UKaKWVqGg5W44z6XqVjRc7qbT_HkcpPXIazeiZVzMPIR8oFBRodXUo7NQUDCgtQBXAqldkRWWtchCifE1WoCrIlWTskryN8QBAmVTVG3LJGPCKynJFru_259HbffBHzH7h49Sb0fkh8122xb6feh8xuz8P4x6ji5kbsk0wjWv9KbXvyEVn-ojvn-uaPHz_9rC9yXc_f9xuN7vcipKPeamsNTVlQqESgiqjwEpeSstLUdc1tyUyaZuubmTFWFdVgEBta2VjO8FLviZflti96fUpuKMJZ-2N0zebnZ5nQOfXBH-iif28sKfg_0wYR3100aZPzIB-ilqBSChP8JrQhbTBxxiwe4mmoGe9-qCTXj3r1aB00pt2Pj6nT80R25eNfz4T8GkBOuO1eQwu6t_3KaEEAC4Fm4mvC4FJ2JPDoKN1OFhsXUA76ta7_xzwF7hskek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904012324</pqid></control><display><type>article</type><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</creator><creatorcontrib>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</creatorcontrib><description>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments. ► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2011.09.026</identifier><identifier>PMID: 22036185</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Agricultural sciences ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cell Wall - metabolism ; cell walls ; cellulose ; Cellulose - metabolism ; cellulose synthase ; DNA, Complementary - genetics ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Hypocotyl - growth &amp; development ; Hypocotyl - metabolism ; hypocotyls ; Life Sciences ; Light ; Microfibrils - metabolism ; microtubules ; Microtubules - metabolism ; mutants ; phenotype ; phosphorylation ; photoreceptors ; phytochrome ; Phytochrome B - metabolism ; plant development ; plasma membrane ; plastics ; signal transduction</subject><ispartof>Current biology, 2011-11, Vol.21 (21), p.1822-1827</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</citedby><cites>FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</cites><orcidid>0000-0002-9094-8924 ; 0000-0002-5493-754X ; 0000-0002-5728-146X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2011.09.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22036185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01001243$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bischoff, Volker</creatorcontrib><creatorcontrib>Desprez, Thierry</creatorcontrib><creatorcontrib>Mouille, Gregory</creatorcontrib><creatorcontrib>Vernhettes, Samantha</creatorcontrib><creatorcontrib>Gonneau, Martine</creatorcontrib><creatorcontrib>Höfte, Herman</creatorcontrib><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments. ► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</description><subject>Agricultural sciences</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell Wall - metabolism</subject><subject>cell walls</subject><subject>cellulose</subject><subject>Cellulose - metabolism</subject><subject>cellulose synthase</subject><subject>DNA, Complementary - genetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Hypocotyl - growth &amp; development</subject><subject>Hypocotyl - metabolism</subject><subject>hypocotyls</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microfibrils - metabolism</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>mutants</subject><subject>phenotype</subject><subject>phosphorylation</subject><subject>photoreceptors</subject><subject>phytochrome</subject><subject>Phytochrome B - metabolism</subject><subject>plant development</subject><subject>plasma membrane</subject><subject>plastics</subject><subject>signal transduction</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERZeFH8AFckMcko4_ktiil9UKaKWVqGg5W44z6XqVjRc7qbT_HkcpPXIazeiZVzMPIR8oFBRodXUo7NQUDCgtQBXAqldkRWWtchCifE1WoCrIlWTskryN8QBAmVTVG3LJGPCKynJFru_259HbffBHzH7h49Sb0fkh8122xb6feh8xuz8P4x6ji5kbsk0wjWv9KbXvyEVn-ojvn-uaPHz_9rC9yXc_f9xuN7vcipKPeamsNTVlQqESgiqjwEpeSstLUdc1tyUyaZuubmTFWFdVgEBta2VjO8FLviZflti96fUpuKMJZ-2N0zebnZ5nQOfXBH-iif28sKfg_0wYR3100aZPzIB-ilqBSChP8JrQhbTBxxiwe4mmoGe9-qCTXj3r1aB00pt2Pj6nT80R25eNfz4T8GkBOuO1eQwu6t_3KaEEAC4Fm4mvC4FJ2JPDoKN1OFhsXUA76ta7_xzwF7hskek</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Bischoff, Volker</creator><creator>Desprez, Thierry</creator><creator>Mouille, Gregory</creator><creator>Vernhettes, Samantha</creator><creator>Gonneau, Martine</creator><creator>Höfte, Herman</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9094-8924</orcidid><orcidid>https://orcid.org/0000-0002-5493-754X</orcidid><orcidid>https://orcid.org/0000-0002-5728-146X</orcidid></search><sort><creationdate>20111108</creationdate><title>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</title><author>Bischoff, Volker ; Desprez, Thierry ; Mouille, Gregory ; Vernhettes, Samantha ; Gonneau, Martine ; Höfte, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-59cca71249e94419a90c8358c3547773c5e28cbf7b8622f660e01cdc8bcf4353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural sciences</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell Wall - metabolism</topic><topic>cell walls</topic><topic>cellulose</topic><topic>Cellulose - metabolism</topic><topic>cellulose synthase</topic><topic>DNA, Complementary - genetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Hypocotyl - growth &amp; development</topic><topic>Hypocotyl - metabolism</topic><topic>hypocotyls</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microfibrils - metabolism</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>mutants</topic><topic>phenotype</topic><topic>phosphorylation</topic><topic>photoreceptors</topic><topic>phytochrome</topic><topic>Phytochrome B - metabolism</topic><topic>plant development</topic><topic>plasma membrane</topic><topic>plastics</topic><topic>signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bischoff, Volker</creatorcontrib><creatorcontrib>Desprez, Thierry</creatorcontrib><creatorcontrib>Mouille, Gregory</creatorcontrib><creatorcontrib>Vernhettes, Samantha</creatorcontrib><creatorcontrib>Gonneau, Martine</creatorcontrib><creatorcontrib>Höfte, Herman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bischoff, Volker</au><au>Desprez, Thierry</au><au>Mouille, Gregory</au><au>Vernhettes, Samantha</au><au>Gonneau, Martine</au><au>Höfte, Herman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytochrome Regulation of Cellulose Synthesis in Arabidopsis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>21</volume><issue>21</issue><spage>1822</spage><epage>1827</epage><pages>1822-1827</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments. ► CSC velocity in dark-grown hypocotyls depends on CESA5:CESA6 ratio ► Microtubules are required for the control of CSC velocity ► Phosphorylation of CESA5 regulates CSC velocity in dark-grown hypocotyls ► PHYB activation overrides inhibition of CSC movement</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>22036185</pmid><doi>10.1016/j.cub.2011.09.026</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9094-8924</orcidid><orcidid>https://orcid.org/0000-0002-5493-754X</orcidid><orcidid>https://orcid.org/0000-0002-5728-146X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2011-11, Vol.21 (21), p.1822-1827
issn 0960-9822
1879-0445
language eng
recordid cdi_hal_primary_oai_HAL_hal_01001243v1
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agricultural sciences
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cell Wall - metabolism
cell walls
cellulose
Cellulose - metabolism
cellulose synthase
DNA, Complementary - genetics
Gene Expression Regulation, Plant
Genes, Plant
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Hypocotyl - growth & development
Hypocotyl - metabolism
hypocotyls
Life Sciences
Light
Microfibrils - metabolism
microtubules
Microtubules - metabolism
mutants
phenotype
phosphorylation
photoreceptors
phytochrome
Phytochrome B - metabolism
plant development
plasma membrane
plastics
signal transduction
title Phytochrome Regulation of Cellulose Synthesis in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytochrome%20Regulation%20of%20Cellulose%20Synthesis%20in%20Arabidopsis&rft.jtitle=Current%20biology&rft.au=Bischoff,%20Volker&rft.date=2011-11-08&rft.volume=21&rft.issue=21&rft.spage=1822&rft.epage=1827&rft.pages=1822-1827&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2011.09.026&rft_dat=%3Cproquest_hal_p%3E904012324%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904012324&rft_id=info:pmid/22036185&rft_els_id=S0960982211010281&rfr_iscdi=true