Singular robust room-temperature spin response from topological Dirac fermions
The surface electronic states associated with topological insulators have attracted considerable attention due to their robust nature. Using low-field susceptibility measurements, a paramagnetic singularity that is common to the (Bi,Sn) 2 (Se,Te) 3 family of topological insulators is observed, and e...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-06, Vol.13 (6), p.580-585 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 6 |
container_start_page | 580 |
container_title | Nature materials |
container_volume | 13 |
creator | Zhao, Lukas Deng, Haiming Korzhovska, Inna Chen, Zhiyi Konczykowski, Marcin Hruban, Andrzej Oganesyan, Vadim Krusin-Elbaum, Lia |
description | The surface electronic states associated with topological insulators have attracted considerable attention due to their robust nature. Using low-field susceptibility measurements, a paramagnetic singularity that is common to the (Bi,Sn)
2
(Se,Te)
3
family of topological insulators is observed, and explained in terms of the topological surface states.
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states
1
,
2
,
3
,
4
,
5
,
6
that are robust against impurity scattering
2
,
3
,
7
,
8
,
9
. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi
2
Se
3
, Bi
2
Te
3
and Sb
2
Te
3
). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin
10
,
11
, and establishes a sustainable platform for the singular field-tunable Dirac spin response. |
doi_str_mv | 10.1038/nmat3962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00998601v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415730211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-88fe844f436da5041168ea8631679b2f8105611c77be07ebc7a9d4c685692e903</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMofqyCv0AKXvRQzaTJJD3K-gmLHtRzSbvTtdI2NWkF_71dXFfx5GlC8vDMTF7GDoGfAU_MedvYPklRbLBdkBpjicg3V2cAIXbYXgivnAtQCrfZjpAmQZ3gLrt_rNrFUFsfeZcPoR-La-Kemo687QdPUeiqNvIUOtcGikrvmqh3navdoipsHV1W3hZRSb6pRmCfbZW2DnSwqhP2fH31NL2NZw83d9OLWVwoEH1sTElGylImOLeKSwA0ZA0mgDrNRWmAKwQotM6Ja8oLbdO5LNAoTAWlPJmw0y_vi62zzleN9R-Zs1V2ezHLlnecp6lBDu8wsidfbOfd20Chz5oqFFTXtiU3hGz8k7EdyFT9AxU6EQbFcoLjP-irG3w7Lr0UahRKGf4jLLwLwVO5HhZ4towu-45uRI9WwiFvaL4Gv7P62TmMT-2C_K-Of2WfkpOf3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557625580</pqid></control><display><type>article</type><title>Singular robust room-temperature spin response from topological Dirac fermions</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zhao, Lukas ; Deng, Haiming ; Korzhovska, Inna ; Chen, Zhiyi ; Konczykowski, Marcin ; Hruban, Andrzej ; Oganesyan, Vadim ; Krusin-Elbaum, Lia</creator><creatorcontrib>Zhao, Lukas ; Deng, Haiming ; Korzhovska, Inna ; Chen, Zhiyi ; Konczykowski, Marcin ; Hruban, Andrzej ; Oganesyan, Vadim ; Krusin-Elbaum, Lia</creatorcontrib><description>The surface electronic states associated with topological insulators have attracted considerable attention due to their robust nature. Using low-field susceptibility measurements, a paramagnetic singularity that is common to the (Bi,Sn)
2
(Se,Te)
3
family of topological insulators is observed, and explained in terms of the topological surface states.
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states
1
,
2
,
3
,
4
,
5
,
6
that are robust against impurity scattering
2
,
3
,
7
,
8
,
9
. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi
2
Se
3
, Bi
2
Te
3
and Sb
2
Te
3
). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin
10
,
11
, and establishes a sustainable platform for the singular field-tunable Dirac spin response.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3962</identifier><identifier>PMID: 24836736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2792 ; 639/766/119/2792 ; Biomaterials ; Carrier density ; Condensed Matter ; Condensed Matter Physics ; Cooling ; Fermions ; Insulators ; letter ; Low energy ; Magnetic fields ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Other ; Physics ; Singularities ; Temperature effects ; Thermoelectricity ; Three dimensional ; Three dimensional imaging ; Topological manifolds ; Topology</subject><ispartof>Nature materials, 2014-06, Vol.13 (6), p.580-585</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-88fe844f436da5041168ea8631679b2f8105611c77be07ebc7a9d4c685692e903</citedby><cites>FETCH-LOGICAL-c512t-88fe844f436da5041168ea8631679b2f8105611c77be07ebc7a9d4c685692e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24836736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://polytechnique.hal.science/hal-00998601$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lukas</creatorcontrib><creatorcontrib>Deng, Haiming</creatorcontrib><creatorcontrib>Korzhovska, Inna</creatorcontrib><creatorcontrib>Chen, Zhiyi</creatorcontrib><creatorcontrib>Konczykowski, Marcin</creatorcontrib><creatorcontrib>Hruban, Andrzej</creatorcontrib><creatorcontrib>Oganesyan, Vadim</creatorcontrib><creatorcontrib>Krusin-Elbaum, Lia</creatorcontrib><title>Singular robust room-temperature spin response from topological Dirac fermions</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The surface electronic states associated with topological insulators have attracted considerable attention due to their robust nature. Using low-field susceptibility measurements, a paramagnetic singularity that is common to the (Bi,Sn)
2
(Se,Te)
3
family of topological insulators is observed, and explained in terms of the topological surface states.
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states
1
,
2
,
3
,
4
,
5
,
6
that are robust against impurity scattering
2
,
3
,
7
,
8
,
9
. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi
2
Se
3
, Bi
2
Te
3
and Sb
2
Te
3
). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin
10
,
11
, and establishes a sustainable platform for the singular field-tunable Dirac spin response.</description><subject>639/301/119/2792</subject><subject>639/766/119/2792</subject><subject>Biomaterials</subject><subject>Carrier density</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Fermions</subject><subject>Insulators</subject><subject>letter</subject><subject>Low energy</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Other</subject><subject>Physics</subject><subject>Singularities</subject><subject>Temperature effects</subject><subject>Thermoelectricity</subject><subject>Three dimensional</subject><subject>Three dimensional imaging</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LxDAQhoMofqyCv0AKXvRQzaTJJD3K-gmLHtRzSbvTtdI2NWkF_71dXFfx5GlC8vDMTF7GDoGfAU_MedvYPklRbLBdkBpjicg3V2cAIXbYXgivnAtQCrfZjpAmQZ3gLrt_rNrFUFsfeZcPoR-La-Kemo687QdPUeiqNvIUOtcGikrvmqh3navdoipsHV1W3hZRSb6pRmCfbZW2DnSwqhP2fH31NL2NZw83d9OLWVwoEH1sTElGylImOLeKSwA0ZA0mgDrNRWmAKwQotM6Ja8oLbdO5LNAoTAWlPJmw0y_vi62zzleN9R-Zs1V2ezHLlnecp6lBDu8wsidfbOfd20Chz5oqFFTXtiU3hGz8k7EdyFT9AxU6EQbFcoLjP-irG3w7Lr0UahRKGf4jLLwLwVO5HhZ4towu-45uRI9WwiFvaL4Gv7P62TmMT-2C_K-Of2WfkpOf3g</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zhao, Lukas</creator><creator>Deng, Haiming</creator><creator>Korzhovska, Inna</creator><creator>Chen, Zhiyi</creator><creator>Konczykowski, Marcin</creator><creator>Hruban, Andrzej</creator><creator>Oganesyan, Vadim</creator><creator>Krusin-Elbaum, Lia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20140601</creationdate><title>Singular robust room-temperature spin response from topological Dirac fermions</title><author>Zhao, Lukas ; Deng, Haiming ; Korzhovska, Inna ; Chen, Zhiyi ; Konczykowski, Marcin ; Hruban, Andrzej ; Oganesyan, Vadim ; Krusin-Elbaum, Lia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-88fe844f436da5041168ea8631679b2f8105611c77be07ebc7a9d4c685692e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/2792</topic><topic>639/766/119/2792</topic><topic>Biomaterials</topic><topic>Carrier density</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Fermions</topic><topic>Insulators</topic><topic>letter</topic><topic>Low energy</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Other</topic><topic>Physics</topic><topic>Singularities</topic><topic>Temperature effects</topic><topic>Thermoelectricity</topic><topic>Three dimensional</topic><topic>Three dimensional imaging</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lukas</creatorcontrib><creatorcontrib>Deng, Haiming</creatorcontrib><creatorcontrib>Korzhovska, Inna</creatorcontrib><creatorcontrib>Chen, Zhiyi</creatorcontrib><creatorcontrib>Konczykowski, Marcin</creatorcontrib><creatorcontrib>Hruban, Andrzej</creatorcontrib><creatorcontrib>Oganesyan, Vadim</creatorcontrib><creatorcontrib>Krusin-Elbaum, Lia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lukas</au><au>Deng, Haiming</au><au>Korzhovska, Inna</au><au>Chen, Zhiyi</au><au>Konczykowski, Marcin</au><au>Hruban, Andrzej</au><au>Oganesyan, Vadim</au><au>Krusin-Elbaum, Lia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular robust room-temperature spin response from topological Dirac fermions</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>580</spage><epage>585</epage><pages>580-585</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The surface electronic states associated with topological insulators have attracted considerable attention due to their robust nature. Using low-field susceptibility measurements, a paramagnetic singularity that is common to the (Bi,Sn)
2
(Se,Te)
3
family of topological insulators is observed, and explained in terms of the topological surface states.
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states
1
,
2
,
3
,
4
,
5
,
6
that are robust against impurity scattering
2
,
3
,
7
,
8
,
9
. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi
2
Se
3
, Bi
2
Te
3
and Sb
2
Te
3
). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin
10
,
11
, and establishes a sustainable platform for the singular field-tunable Dirac spin response.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24836736</pmid><doi>10.1038/nmat3962</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-06, Vol.13 (6), p.580-585 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00998601v1 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/119/2792 639/766/119/2792 Biomaterials Carrier density Condensed Matter Condensed Matter Physics Cooling Fermions Insulators letter Low energy Magnetic fields Materials Science Nanotechnology Optical and Electronic Materials Other Physics Singularities Temperature effects Thermoelectricity Three dimensional Three dimensional imaging Topological manifolds Topology |
title | Singular robust room-temperature spin response from topological Dirac fermions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20robust%20room-temperature%20spin%20response%20from%20topological%20Dirac%20fermions&rft.jtitle=Nature%20materials&rft.au=Zhao,%20Lukas&rft.date=2014-06-01&rft.volume=13&rft.issue=6&rft.spage=580&rft.epage=585&rft.pages=580-585&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3962&rft_dat=%3Cproquest_hal_p%3E3415730211%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557625580&rft_id=info:pmid/24836736&rfr_iscdi=true |