Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters
Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional...
Gespeichert in:
Veröffentlicht in: | Cell 2012-02, Vol.148 (3), p.502-514 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 3 |
container_start_page | 502 |
container_title | Cell |
container_volume | 148 |
creator | Laan, Liedewij Pavin, Nenad Husson, Julien Romet-Lemonne, Guillaume van Duijn, Martijn López, Magdalena Preciado Vale, Ronald D. Jülicher, Frank Reck-Peterson, Samara L. Dogterom, Marileen |
description | Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
[Display omitted]
[Display omitted]
► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics
Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division. |
doi_str_mv | 10.1016/j.cell.2012.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00994472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741200013X</els_id><sourcerecordid>920231380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCH-AAuSEOCWMnjmOJy2qhLdIiKlHOluNMWq-8cbGdSv33OEpbiQunkTzfe555Q8g7ChUF2n4-VAadqxhQVgGtAMQLsqEgRdlQwV6SDYBkZdeK5oScxngAgI5z_pqcMFZDI2m3IXbnQ7JGu-Lrw4R2KnZ-SsG7WPywJvg097PDpaeP1sQi-eICJww6YXE1O2enm-LcB4O5datTceWjTdZP_6i3MWGIb8irUbuIbx_rGbk-_3a9uyz3Py--77b70jRcpLJv-wH1wFsYDKcjrWvErjVIR4NM1lTmMqLkfSsFz21NZSsZZcLwUXe0PiOfVttb7dRdsEcdHpTXVl1u92p5y6HIphHsfmE_ruxd8H9mjEkdbVwy1RP6OSrJgNW07iCTbCXzVjEGHJ-tKajlGOqgFqFajqGA5l9EFr1_tJ_7Iw7Pkqf0M_BhBUbtlb4JNqrfv7JDmy8FeVeeiS8rgTmxe4tBRWNxMjjYgCapwdv_TfAXMqCksQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920231380</pqid></control><display><type>article</type><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</creator><creatorcontrib>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</creatorcontrib><description>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
[Display omitted]
[Display omitted]
► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics
Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.01.007</identifier><identifier>PMID: 22304918</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aster (cell structure) ; Biomechanical Phenomena ; cell division ; centrosomes ; cortex ; Cytoplasmic Dyneins - metabolism ; Cytoskeleton - metabolism ; dynein ATPase ; fibroblasts ; mechanics ; microtubules ; Microtubules - metabolism ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Cell, 2012-02, Vol.148 (3), p.502-514</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</citedby><cites>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</cites><orcidid>0000-0002-4938-1065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2012.01.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22304918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://polytechnique.hal.science/hal-00994472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laan, Liedewij</creatorcontrib><creatorcontrib>Pavin, Nenad</creatorcontrib><creatorcontrib>Husson, Julien</creatorcontrib><creatorcontrib>Romet-Lemonne, Guillaume</creatorcontrib><creatorcontrib>van Duijn, Martijn</creatorcontrib><creatorcontrib>López, Magdalena Preciado</creatorcontrib><creatorcontrib>Vale, Ronald D.</creatorcontrib><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Reck-Peterson, Samara L.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><title>Cell</title><addtitle>Cell</addtitle><description>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
[Display omitted]
[Display omitted]
► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics
Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</description><subject>aster (cell structure)</subject><subject>Biomechanical Phenomena</subject><subject>cell division</subject><subject>centrosomes</subject><subject>cortex</subject><subject>Cytoplasmic Dyneins - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>dynein ATPase</subject><subject>fibroblasts</subject><subject>mechanics</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EotvCH-AAuSEOCWMnjmOJy2qhLdIiKlHOluNMWq-8cbGdSv33OEpbiQunkTzfe555Q8g7ChUF2n4-VAadqxhQVgGtAMQLsqEgRdlQwV6SDYBkZdeK5oScxngAgI5z_pqcMFZDI2m3IXbnQ7JGu-Lrw4R2KnZ-SsG7WPywJvg097PDpaeP1sQi-eICJww6YXE1O2enm-LcB4O5datTceWjTdZP_6i3MWGIb8irUbuIbx_rGbk-_3a9uyz3Py--77b70jRcpLJv-wH1wFsYDKcjrWvErjVIR4NM1lTmMqLkfSsFz21NZSsZZcLwUXe0PiOfVttb7dRdsEcdHpTXVl1u92p5y6HIphHsfmE_ruxd8H9mjEkdbVwy1RP6OSrJgNW07iCTbCXzVjEGHJ-tKajlGOqgFqFajqGA5l9EFr1_tJ_7Iw7Pkqf0M_BhBUbtlb4JNqrfv7JDmy8FeVeeiS8rgTmxe4tBRWNxMjjYgCapwdv_TfAXMqCksQ</recordid><startdate>20120203</startdate><enddate>20120203</enddate><creator>Laan, Liedewij</creator><creator>Pavin, Nenad</creator><creator>Husson, Julien</creator><creator>Romet-Lemonne, Guillaume</creator><creator>van Duijn, Martijn</creator><creator>López, Magdalena Preciado</creator><creator>Vale, Ronald D.</creator><creator>Jülicher, Frank</creator><creator>Reck-Peterson, Samara L.</creator><creator>Dogterom, Marileen</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4938-1065</orcidid></search><sort><creationdate>20120203</creationdate><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><author>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>aster (cell structure)</topic><topic>Biomechanical Phenomena</topic><topic>cell division</topic><topic>centrosomes</topic><topic>cortex</topic><topic>Cytoplasmic Dyneins - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>dynein ATPase</topic><topic>fibroblasts</topic><topic>mechanics</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laan, Liedewij</creatorcontrib><creatorcontrib>Pavin, Nenad</creatorcontrib><creatorcontrib>Husson, Julien</creatorcontrib><creatorcontrib>Romet-Lemonne, Guillaume</creatorcontrib><creatorcontrib>van Duijn, Martijn</creatorcontrib><creatorcontrib>López, Magdalena Preciado</creatorcontrib><creatorcontrib>Vale, Ronald D.</creatorcontrib><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Reck-Peterson, Samara L.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laan, Liedewij</au><au>Pavin, Nenad</au><au>Husson, Julien</au><au>Romet-Lemonne, Guillaume</au><au>van Duijn, Martijn</au><au>López, Magdalena Preciado</au><au>Vale, Ronald D.</au><au>Jülicher, Frank</au><au>Reck-Peterson, Samara L.</au><au>Dogterom, Marileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-02-03</date><risdate>2012</risdate><volume>148</volume><issue>3</issue><spage>502</spage><epage>514</epage><pages>502-514</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
[Display omitted]
[Display omitted]
► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics
Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22304918</pmid><doi>10.1016/j.cell.2012.01.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4938-1065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2012-02, Vol.148 (3), p.502-514 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00994472v1 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | aster (cell structure) Biomechanical Phenomena cell division centrosomes cortex Cytoplasmic Dyneins - metabolism Cytoskeleton - metabolism dynein ATPase fibroblasts mechanics microtubules Microtubules - metabolism Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism |
title | Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T19%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20Dynein%20Controls%20Microtubule%20Dynamics%20to%20Generate%20Pulling%20Forces%20that%20Position%20Microtubule%20Asters&rft.jtitle=Cell&rft.au=Laan,%20Liedewij&rft.date=2012-02-03&rft.volume=148&rft.issue=3&rft.spage=502&rft.epage=514&rft.pages=502-514&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.01.007&rft_dat=%3Cproquest_hal_p%3E920231380%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920231380&rft_id=info:pmid/22304918&rft_els_id=S009286741200013X&rfr_iscdi=true |