Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters

Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-02, Vol.148 (3), p.502-514
Hauptverfasser: Laan, Liedewij, Pavin, Nenad, Husson, Julien, Romet-Lemonne, Guillaume, van Duijn, Martijn, López, Magdalena Preciado, Vale, Ronald D., Jülicher, Frank, Reck-Peterson, Samara L., Dogterom, Marileen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 3
container_start_page 502
container_title Cell
container_volume 148
creator Laan, Liedewij
Pavin, Nenad
Husson, Julien
Romet-Lemonne, Guillaume
van Duijn, Martijn
López, Magdalena Preciado
Vale, Ronald D.
Jülicher, Frank
Reck-Peterson, Samara L.
Dogterom, Marileen
description Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells. [Display omitted] [Display omitted] ► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.
doi_str_mv 10.1016/j.cell.2012.01.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00994472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741200013X</els_id><sourcerecordid>920231380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCH-AAuSEOCWMnjmOJy2qhLdIiKlHOluNMWq-8cbGdSv33OEpbiQunkTzfe555Q8g7ChUF2n4-VAadqxhQVgGtAMQLsqEgRdlQwV6SDYBkZdeK5oScxngAgI5z_pqcMFZDI2m3IXbnQ7JGu-Lrw4R2KnZ-SsG7WPywJvg097PDpaeP1sQi-eICJww6YXE1O2enm-LcB4O5datTceWjTdZP_6i3MWGIb8irUbuIbx_rGbk-_3a9uyz3Py--77b70jRcpLJv-wH1wFsYDKcjrWvErjVIR4NM1lTmMqLkfSsFz21NZSsZZcLwUXe0PiOfVttb7dRdsEcdHpTXVl1u92p5y6HIphHsfmE_ruxd8H9mjEkdbVwy1RP6OSrJgNW07iCTbCXzVjEGHJ-tKajlGOqgFqFajqGA5l9EFr1_tJ_7Iw7Pkqf0M_BhBUbtlb4JNqrfv7JDmy8FeVeeiS8rgTmxe4tBRWNxMjjYgCapwdv_TfAXMqCksQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920231380</pqid></control><display><type>article</type><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</creator><creatorcontrib>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</creatorcontrib><description>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells. [Display omitted] [Display omitted] ► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.01.007</identifier><identifier>PMID: 22304918</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aster (cell structure) ; Biomechanical Phenomena ; cell division ; centrosomes ; cortex ; Cytoplasmic Dyneins - metabolism ; Cytoskeleton - metabolism ; dynein ATPase ; fibroblasts ; mechanics ; microtubules ; Microtubules - metabolism ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Cell, 2012-02, Vol.148 (3), p.502-514</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</citedby><cites>FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</cites><orcidid>0000-0002-4938-1065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2012.01.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22304918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://polytechnique.hal.science/hal-00994472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laan, Liedewij</creatorcontrib><creatorcontrib>Pavin, Nenad</creatorcontrib><creatorcontrib>Husson, Julien</creatorcontrib><creatorcontrib>Romet-Lemonne, Guillaume</creatorcontrib><creatorcontrib>van Duijn, Martijn</creatorcontrib><creatorcontrib>López, Magdalena Preciado</creatorcontrib><creatorcontrib>Vale, Ronald D.</creatorcontrib><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Reck-Peterson, Samara L.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><title>Cell</title><addtitle>Cell</addtitle><description>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells. [Display omitted] [Display omitted] ► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</description><subject>aster (cell structure)</subject><subject>Biomechanical Phenomena</subject><subject>cell division</subject><subject>centrosomes</subject><subject>cortex</subject><subject>Cytoplasmic Dyneins - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>dynein ATPase</subject><subject>fibroblasts</subject><subject>mechanics</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EotvCH-AAuSEOCWMnjmOJy2qhLdIiKlHOluNMWq-8cbGdSv33OEpbiQunkTzfe555Q8g7ChUF2n4-VAadqxhQVgGtAMQLsqEgRdlQwV6SDYBkZdeK5oScxngAgI5z_pqcMFZDI2m3IXbnQ7JGu-Lrw4R2KnZ-SsG7WPywJvg097PDpaeP1sQi-eICJww6YXE1O2enm-LcB4O5datTceWjTdZP_6i3MWGIb8irUbuIbx_rGbk-_3a9uyz3Py--77b70jRcpLJv-wH1wFsYDKcjrWvErjVIR4NM1lTmMqLkfSsFz21NZSsZZcLwUXe0PiOfVttb7dRdsEcdHpTXVl1u92p5y6HIphHsfmE_ruxd8H9mjEkdbVwy1RP6OSrJgNW07iCTbCXzVjEGHJ-tKajlGOqgFqFajqGA5l9EFr1_tJ_7Iw7Pkqf0M_BhBUbtlb4JNqrfv7JDmy8FeVeeiS8rgTmxe4tBRWNxMjjYgCapwdv_TfAXMqCksQ</recordid><startdate>20120203</startdate><enddate>20120203</enddate><creator>Laan, Liedewij</creator><creator>Pavin, Nenad</creator><creator>Husson, Julien</creator><creator>Romet-Lemonne, Guillaume</creator><creator>van Duijn, Martijn</creator><creator>López, Magdalena Preciado</creator><creator>Vale, Ronald D.</creator><creator>Jülicher, Frank</creator><creator>Reck-Peterson, Samara L.</creator><creator>Dogterom, Marileen</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4938-1065</orcidid></search><sort><creationdate>20120203</creationdate><title>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</title><author>Laan, Liedewij ; Pavin, Nenad ; Husson, Julien ; Romet-Lemonne, Guillaume ; van Duijn, Martijn ; López, Magdalena Preciado ; Vale, Ronald D. ; Jülicher, Frank ; Reck-Peterson, Samara L. ; Dogterom, Marileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-b6bdead560dc51f133ee86ce1fce29319ce2fe95b6975f13a19692127c5fa813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>aster (cell structure)</topic><topic>Biomechanical Phenomena</topic><topic>cell division</topic><topic>centrosomes</topic><topic>cortex</topic><topic>Cytoplasmic Dyneins - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>dynein ATPase</topic><topic>fibroblasts</topic><topic>mechanics</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laan, Liedewij</creatorcontrib><creatorcontrib>Pavin, Nenad</creatorcontrib><creatorcontrib>Husson, Julien</creatorcontrib><creatorcontrib>Romet-Lemonne, Guillaume</creatorcontrib><creatorcontrib>van Duijn, Martijn</creatorcontrib><creatorcontrib>López, Magdalena Preciado</creatorcontrib><creatorcontrib>Vale, Ronald D.</creatorcontrib><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Reck-Peterson, Samara L.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laan, Liedewij</au><au>Pavin, Nenad</au><au>Husson, Julien</au><au>Romet-Lemonne, Guillaume</au><au>van Duijn, Martijn</au><au>López, Magdalena Preciado</au><au>Vale, Ronald D.</au><au>Jülicher, Frank</au><au>Reck-Peterson, Samara L.</au><au>Dogterom, Marileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-02-03</date><risdate>2012</risdate><volume>148</volume><issue>3</issue><spage>502</spage><epage>514</epage><pages>502-514</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the ‘cortical’ interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells. [Display omitted] [Display omitted] ► Barrier-attached dynein captures microtubule ends and controls microtubule length ► Interaction between dynein and shrinking microtubules generates pulling forces ► Combined pushing and pulling forces reliably center microtubule asters ► Positioning due to pulling is explained by a theoretical model of aster mechanics Surface-attached dynein captures microtubules and modulates their shrinkage to produce pulling forces that ensure microtubule organizing centers are positioned for cell division.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22304918</pmid><doi>10.1016/j.cell.2012.01.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4938-1065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-02, Vol.148 (3), p.502-514
issn 0092-8674
1097-4172
language eng
recordid cdi_hal_primary_oai_HAL_hal_00994472v1
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects aster (cell structure)
Biomechanical Phenomena
cell division
centrosomes
cortex
Cytoplasmic Dyneins - metabolism
Cytoskeleton - metabolism
dynein ATPase
fibroblasts
mechanics
microtubules
Microtubules - metabolism
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
title Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T19%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20Dynein%20Controls%20Microtubule%20Dynamics%20to%20Generate%20Pulling%20Forces%20that%20Position%20Microtubule%20Asters&rft.jtitle=Cell&rft.au=Laan,%20Liedewij&rft.date=2012-02-03&rft.volume=148&rft.issue=3&rft.spage=502&rft.epage=514&rft.pages=502-514&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.01.007&rft_dat=%3Cproquest_hal_p%3E920231380%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920231380&rft_id=info:pmid/22304918&rft_els_id=S009286741200013X&rfr_iscdi=true