Evaluating dipolar source localization feasibility from intracerebral SEEG recordings
Stereo-electroencephalography (SEEG) is considered as the golden standard for exploring targeted structures during pre-surgical evaluation in drug-resistant partial epilepsy. The depth electrodes, inserted in the brain, consist of several collinear measuring contacts (sensors). Clinical routine anal...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-09, Vol.98, p.118-133 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | |
container_start_page | 118 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 98 |
creator | Caune, V. Ranta, R. Le Cam, S. Hofmanis, J. Maillard, L. Koessler, L. Louis-Dorr, V. |
description | Stereo-electroencephalography (SEEG) is considered as the golden standard for exploring targeted structures during pre-surgical evaluation in drug-resistant partial epilepsy. The depth electrodes, inserted in the brain, consist of several collinear measuring contacts (sensors). Clinical routine analysis of SEEG signals is performed on bipolar montage, providing a focal view of the explored structures, thus eliminating activities of distant sources that propagate through the brain volume. We propose in this paper to exploit the common reference SEEG signals. In this case, the volume propagation information is preserved and electrical source localization (ESL) approaches can be proposed. Current ESL approaches used to localize and estimate the activity of the neural generators are mainly based on surface EEG/MEG signals, but very few studies exist on real SEEG recordings, and the case of equivalent current dipole source localization has not been explored yet in this context. In this study, we investigate the influence of volume conduction model, spatial configuration of SEEG sensors and level of noise on the ESL accuracy, using a realistic simulation setup. Localizations on real SEEG signals recorded during intracerebral electrical stimulations (ICS, known sources) as well as on epileptic interictal spikes are carried out. Our results show that, under certain conditions, a straightforward approach based on an equivalent current dipole model for the source and on simple analytical volume conduction models yields sufficiently precise solutions (below 10mm) of the localization problem. Thus, electrical source imaging using SEEG signals is a promising tool for distant brain source investigation and might be used as a complement to routine visual interpretations.
•Original use of intra-cerebral signals (SEEG) for source localization•Considerations on the applicability conditions of SEEG based source localization•First direct validation on real known sources of intra-cerebral stimulation•First application and clinical validation on real interictal epileptic spikes•Median localization precision below 10mm, depending on the recording conditions |
doi_str_mv | 10.1016/j.neuroimage.2014.04.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00988276v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811914003383</els_id><sourcerecordid>1551628746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-d9c4e060b783995d05d0fd9d35fd4651084bb731c9dc51d9f752f936d5e4d16a3</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhU1oSdK0f6EIemkO3mpsSZaOadgkhYUe2pyFLI1TLVprK9kL6a-vzKYp9NLAAwnpmxnmvaoiQFdAQXzarkacU_Q784CrhgJb0SIuT6pzoIrXinfNq-XO21oCqLPqTc5bSqkCJk-rs4Z1igPn59X9-mDCbCY_PhDn9zGYRHKck0USojXB_yp_cSQDmux7H_z0SIYUd8SPUzIWE_bJBPJtvb4lCW1MrnTKb6vXgwkZ3z2dF9X9zfr79V29-Xr75fpqU1vOm6l2yjKkgvadbJXijhYNTrmWD44JDlSyvu9asMpZDk4NHW8G1QrHkTkQpr2oLo99f5ig96n4kR51NF7fXW308lY2lrLpxAEK-_HI7lP8OWOe9M5niyGYEeOcdbGDU-g61b4EBdHIjokXoIyDpIw1Bf3wD7otRo_Fn4ViDAQFWSh5pGyKOSccnvcCqpfw9Vb_DV8v4WtaxJfS908D5n6H7rnwT9oF-HwEsGRy8Jh0th5Hi86X7Cbtov__lN-K78Oj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544416018</pqid></control><display><type>article</type><title>Evaluating dipolar source localization feasibility from intracerebral SEEG recordings</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Caune, V. ; Ranta, R. ; Le Cam, S. ; Hofmanis, J. ; Maillard, L. ; Koessler, L. ; Louis-Dorr, V.</creator><creatorcontrib>Caune, V. ; Ranta, R. ; Le Cam, S. ; Hofmanis, J. ; Maillard, L. ; Koessler, L. ; Louis-Dorr, V.</creatorcontrib><description>Stereo-electroencephalography (SEEG) is considered as the golden standard for exploring targeted structures during pre-surgical evaluation in drug-resistant partial epilepsy. The depth electrodes, inserted in the brain, consist of several collinear measuring contacts (sensors). Clinical routine analysis of SEEG signals is performed on bipolar montage, providing a focal view of the explored structures, thus eliminating activities of distant sources that propagate through the brain volume. We propose in this paper to exploit the common reference SEEG signals. In this case, the volume propagation information is preserved and electrical source localization (ESL) approaches can be proposed. Current ESL approaches used to localize and estimate the activity of the neural generators are mainly based on surface EEG/MEG signals, but very few studies exist on real SEEG recordings, and the case of equivalent current dipole source localization has not been explored yet in this context. In this study, we investigate the influence of volume conduction model, spatial configuration of SEEG sensors and level of noise on the ESL accuracy, using a realistic simulation setup. Localizations on real SEEG signals recorded during intracerebral electrical stimulations (ICS, known sources) as well as on epileptic interictal spikes are carried out. Our results show that, under certain conditions, a straightforward approach based on an equivalent current dipole model for the source and on simple analytical volume conduction models yields sufficiently precise solutions (below 10mm) of the localization problem. Thus, electrical source imaging using SEEG signals is a promising tool for distant brain source investigation and might be used as a complement to routine visual interpretations.
•Original use of intra-cerebral signals (SEEG) for source localization•Considerations on the applicability conditions of SEEG based source localization•First direct validation on real known sources of intra-cerebral stimulation•First application and clinical validation on real interictal epileptic spikes•Median localization precision below 10mm, depending on the recording conditions</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2014.04.058</identifier><identifier>PMID: 24795155</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Cerebral Cortex - physiology ; Cerebral Cortex - physiopathology ; Computer Science ; Dipolar source model ; Electric Stimulation ; Electrical source imaging ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Electrophysiological Phenomena ; Engineering Sciences ; Epilepsy ; Female ; Humans ; Image Processing, Computer-Assisted ; Intracerebral electrical stimulations (ICS) ; Inverse problem ; Inverse problems ; Life Sciences ; Male ; Models, Neurological ; Neurons and Cognition ; Noise ; Propagation ; Seizures - physiopathology ; Signal and Image processing ; Stereo-electroencephalography (SEEG)</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-09, Vol.98, p.118-133</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 1, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-d9c4e060b783995d05d0fd9d35fd4651084bb731c9dc51d9f752f936d5e4d16a3</citedby><cites>FETCH-LOGICAL-c552t-d9c4e060b783995d05d0fd9d35fd4651084bb731c9dc51d9f752f936d5e4d16a3</cites><orcidid>0000-0002-0893-8998 ; 0000-0001-9815-5382 ; 0000-0001-9009-444X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811914003383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24795155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00988276$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caune, V.</creatorcontrib><creatorcontrib>Ranta, R.</creatorcontrib><creatorcontrib>Le Cam, S.</creatorcontrib><creatorcontrib>Hofmanis, J.</creatorcontrib><creatorcontrib>Maillard, L.</creatorcontrib><creatorcontrib>Koessler, L.</creatorcontrib><creatorcontrib>Louis-Dorr, V.</creatorcontrib><title>Evaluating dipolar source localization feasibility from intracerebral SEEG recordings</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Stereo-electroencephalography (SEEG) is considered as the golden standard for exploring targeted structures during pre-surgical evaluation in drug-resistant partial epilepsy. The depth electrodes, inserted in the brain, consist of several collinear measuring contacts (sensors). Clinical routine analysis of SEEG signals is performed on bipolar montage, providing a focal view of the explored structures, thus eliminating activities of distant sources that propagate through the brain volume. We propose in this paper to exploit the common reference SEEG signals. In this case, the volume propagation information is preserved and electrical source localization (ESL) approaches can be proposed. Current ESL approaches used to localize and estimate the activity of the neural generators are mainly based on surface EEG/MEG signals, but very few studies exist on real SEEG recordings, and the case of equivalent current dipole source localization has not been explored yet in this context. In this study, we investigate the influence of volume conduction model, spatial configuration of SEEG sensors and level of noise on the ESL accuracy, using a realistic simulation setup. Localizations on real SEEG signals recorded during intracerebral electrical stimulations (ICS, known sources) as well as on epileptic interictal spikes are carried out. Our results show that, under certain conditions, a straightforward approach based on an equivalent current dipole model for the source and on simple analytical volume conduction models yields sufficiently precise solutions (below 10mm) of the localization problem. Thus, electrical source imaging using SEEG signals is a promising tool for distant brain source investigation and might be used as a complement to routine visual interpretations.
•Original use of intra-cerebral signals (SEEG) for source localization•Considerations on the applicability conditions of SEEG based source localization•First direct validation on real known sources of intra-cerebral stimulation•First application and clinical validation on real interictal epileptic spikes•Median localization precision below 10mm, depending on the recording conditions</description><subject>Adult</subject><subject>Cerebral Cortex - physiology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Computer Science</subject><subject>Dipolar source model</subject><subject>Electric Stimulation</subject><subject>Electrical source imaging</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiological Phenomena</subject><subject>Engineering Sciences</subject><subject>Epilepsy</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Intracerebral electrical stimulations (ICS)</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neurons and Cognition</subject><subject>Noise</subject><subject>Propagation</subject><subject>Seizures - physiopathology</subject><subject>Signal and Image processing</subject><subject>Stereo-electroencephalography (SEEG)</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUFr3DAQhU1oSdK0f6EIemkO3mpsSZaOadgkhYUe2pyFLI1TLVprK9kL6a-vzKYp9NLAAwnpmxnmvaoiQFdAQXzarkacU_Q784CrhgJb0SIuT6pzoIrXinfNq-XO21oCqLPqTc5bSqkCJk-rs4Z1igPn59X9-mDCbCY_PhDn9zGYRHKck0USojXB_yp_cSQDmux7H_z0SIYUd8SPUzIWE_bJBPJtvb4lCW1MrnTKb6vXgwkZ3z2dF9X9zfr79V29-Xr75fpqU1vOm6l2yjKkgvadbJXijhYNTrmWD44JDlSyvu9asMpZDk4NHW8G1QrHkTkQpr2oLo99f5ig96n4kR51NF7fXW308lY2lrLpxAEK-_HI7lP8OWOe9M5niyGYEeOcdbGDU-g61b4EBdHIjokXoIyDpIw1Bf3wD7otRo_Fn4ViDAQFWSh5pGyKOSccnvcCqpfw9Vb_DV8v4WtaxJfS908D5n6H7rnwT9oF-HwEsGRy8Jh0th5Hi86X7Cbtov__lN-K78Oj</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Caune, V.</creator><creator>Ranta, R.</creator><creator>Le Cam, S.</creator><creator>Hofmanis, J.</creator><creator>Maillard, L.</creator><creator>Koessler, L.</creator><creator>Louis-Dorr, V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0893-8998</orcidid><orcidid>https://orcid.org/0000-0001-9815-5382</orcidid><orcidid>https://orcid.org/0000-0001-9009-444X</orcidid></search><sort><creationdate>20140901</creationdate><title>Evaluating dipolar source localization feasibility from intracerebral SEEG recordings</title><author>Caune, V. ; Ranta, R. ; Le Cam, S. ; Hofmanis, J. ; Maillard, L. ; Koessler, L. ; Louis-Dorr, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-d9c4e060b783995d05d0fd9d35fd4651084bb731c9dc51d9f752f936d5e4d16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Cerebral Cortex - physiology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Computer Science</topic><topic>Dipolar source model</topic><topic>Electric Stimulation</topic><topic>Electrical source imaging</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiological Phenomena</topic><topic>Engineering Sciences</topic><topic>Epilepsy</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Intracerebral electrical stimulations (ICS)</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neurons and Cognition</topic><topic>Noise</topic><topic>Propagation</topic><topic>Seizures - physiopathology</topic><topic>Signal and Image processing</topic><topic>Stereo-electroencephalography (SEEG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caune, V.</creatorcontrib><creatorcontrib>Ranta, R.</creatorcontrib><creatorcontrib>Le Cam, S.</creatorcontrib><creatorcontrib>Hofmanis, J.</creatorcontrib><creatorcontrib>Maillard, L.</creatorcontrib><creatorcontrib>Koessler, L.</creatorcontrib><creatorcontrib>Louis-Dorr, V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caune, V.</au><au>Ranta, R.</au><au>Le Cam, S.</au><au>Hofmanis, J.</au><au>Maillard, L.</au><au>Koessler, L.</au><au>Louis-Dorr, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating dipolar source localization feasibility from intracerebral SEEG recordings</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>98</volume><spage>118</spage><epage>133</epage><pages>118-133</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Stereo-electroencephalography (SEEG) is considered as the golden standard for exploring targeted structures during pre-surgical evaluation in drug-resistant partial epilepsy. The depth electrodes, inserted in the brain, consist of several collinear measuring contacts (sensors). Clinical routine analysis of SEEG signals is performed on bipolar montage, providing a focal view of the explored structures, thus eliminating activities of distant sources that propagate through the brain volume. We propose in this paper to exploit the common reference SEEG signals. In this case, the volume propagation information is preserved and electrical source localization (ESL) approaches can be proposed. Current ESL approaches used to localize and estimate the activity of the neural generators are mainly based on surface EEG/MEG signals, but very few studies exist on real SEEG recordings, and the case of equivalent current dipole source localization has not been explored yet in this context. In this study, we investigate the influence of volume conduction model, spatial configuration of SEEG sensors and level of noise on the ESL accuracy, using a realistic simulation setup. Localizations on real SEEG signals recorded during intracerebral electrical stimulations (ICS, known sources) as well as on epileptic interictal spikes are carried out. Our results show that, under certain conditions, a straightforward approach based on an equivalent current dipole model for the source and on simple analytical volume conduction models yields sufficiently precise solutions (below 10mm) of the localization problem. Thus, electrical source imaging using SEEG signals is a promising tool for distant brain source investigation and might be used as a complement to routine visual interpretations.
•Original use of intra-cerebral signals (SEEG) for source localization•Considerations on the applicability conditions of SEEG based source localization•First direct validation on real known sources of intra-cerebral stimulation•First application and clinical validation on real interictal epileptic spikes•Median localization precision below 10mm, depending on the recording conditions</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24795155</pmid><doi>10.1016/j.neuroimage.2014.04.058</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0893-8998</orcidid><orcidid>https://orcid.org/0000-0001-9815-5382</orcidid><orcidid>https://orcid.org/0000-0001-9009-444X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-09, Vol.98, p.118-133 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00988276v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Cerebral Cortex - physiology Cerebral Cortex - physiopathology Computer Science Dipolar source model Electric Stimulation Electrical source imaging Electrodes Electroencephalography Electroencephalography - methods Electrophysiological Phenomena Engineering Sciences Epilepsy Female Humans Image Processing, Computer-Assisted Intracerebral electrical stimulations (ICS) Inverse problem Inverse problems Life Sciences Male Models, Neurological Neurons and Cognition Noise Propagation Seizures - physiopathology Signal and Image processing Stereo-electroencephalography (SEEG) |
title | Evaluating dipolar source localization feasibility from intracerebral SEEG recordings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20dipolar%20source%20localization%20feasibility%20from%20intracerebral%20SEEG%20recordings&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Caune,%20V.&rft.date=2014-09-01&rft.volume=98&rft.spage=118&rft.epage=133&rft.pages=118-133&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2014.04.058&rft_dat=%3Cproquest_hal_p%3E1551628746%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544416018&rft_id=info:pmid/24795155&rft_els_id=S1053811914003383&rfr_iscdi=true |