Invariant sets computation for convex difference inclusions systems

In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2012-08, Vol.61 (8), p.819-826
Hauptverfasser: Fiacchini, M., Alamo, T., Camacho, E.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 8
container_start_page 819
container_title Systems & control letters
container_volume 61
creator Fiacchini, M.
Alamo, T.
Camacho, E.F.
description In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.
doi_str_mv 10.1016/j.sysconle.2012.04.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00984646v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691112000904</els_id><sourcerecordid>1082218111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxCygbJFgkeJzESXZUFS-pEhtYW64zEa5Su3jSiv49jlq6ZXVl-8xc6zB2AzwDDvJhmdGOjHc9ZoKDyHiRxThhE6grkVZNKU_ZJIJVKhuAc3ZBtOScC57nEzZ7c1sdrHZDQjhQYvxqvRn0YL1LOh_i2W3xJ2lt12FAZzCxzvQbiu-UxN4BV3TFzjrdE14f8pJ9Pj99zF7T-fvL22w6T01RVkNqBAA2ZZfLVssijx9AISpAWWhuULdCy4Vssa5qgxLKRZVjgwuJTVPyRaXz_JLd7_d-6V6tg13psFNeW_U6navxjvOmLmQhtxDZuz27Dv57gzSolSWDfa8d-g0p4LUQUAOMqNyjJniigN1xN3A1GlZL9WdYjYYVL1SMOHh76NBkdN8F7Yyl47SQ0JR5XUfucc9hlLO1GBQZO7psbUAzqNbb_6p-AX35lSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082218111</pqid></control><display><type>article</type><title>Invariant sets computation for convex difference inclusions systems</title><source>Elsevier ScienceDirect Journals</source><creator>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</creator><creatorcontrib>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</creatorcontrib><description>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2012.04.012</identifier><identifier>CODEN: SCLEDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Boundaries ; Computation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Convex analysis ; Difference inclusions ; Dynamical Systems ; Exact sciences and technology ; Finite differences and functional equations ; Inclusions ; Invariance ; Invariants ; Linear systems ; Lyapunov functions ; Mathematical analysis ; Mathematics ; Nonlinear dynamics ; Nonlinear systems ; Sciences and techniques of general use</subject><ispartof>Systems &amp; control letters, 2012-08, Vol.61 (8), p.819-826</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</citedby><cites>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</cites><orcidid>0000-0002-3601-0302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2012.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26195388$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00984646$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiacchini, M.</creatorcontrib><creatorcontrib>Alamo, T.</creatorcontrib><creatorcontrib>Camacho, E.F.</creatorcontrib><title>Invariant sets computation for convex difference inclusions systems</title><title>Systems &amp; control letters</title><description>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Convex analysis</subject><subject>Difference inclusions</subject><subject>Dynamical Systems</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Inclusions</subject><subject>Invariance</subject><subject>Invariants</subject><subject>Linear systems</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Sciences and techniques of general use</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxCygbJFgkeJzESXZUFS-pEhtYW64zEa5Su3jSiv49jlq6ZXVl-8xc6zB2AzwDDvJhmdGOjHc9ZoKDyHiRxThhE6grkVZNKU_ZJIJVKhuAc3ZBtOScC57nEzZ7c1sdrHZDQjhQYvxqvRn0YL1LOh_i2W3xJ2lt12FAZzCxzvQbiu-UxN4BV3TFzjrdE14f8pJ9Pj99zF7T-fvL22w6T01RVkNqBAA2ZZfLVssijx9AISpAWWhuULdCy4Vssa5qgxLKRZVjgwuJTVPyRaXz_JLd7_d-6V6tg13psFNeW_U6navxjvOmLmQhtxDZuz27Dv57gzSolSWDfa8d-g0p4LUQUAOMqNyjJniigN1xN3A1GlZL9WdYjYYVL1SMOHh76NBkdN8F7Yyl47SQ0JR5XUfucc9hlLO1GBQZO7psbUAzqNbb_6p-AX35lSw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Fiacchini, M.</creator><creator>Alamo, T.</creator><creator>Camacho, E.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid></search><sort><creationdate>20120801</creationdate><title>Invariant sets computation for convex difference inclusions systems</title><author>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Convex analysis</topic><topic>Difference inclusions</topic><topic>Dynamical Systems</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Inclusions</topic><topic>Invariance</topic><topic>Invariants</topic><topic>Linear systems</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiacchini, M.</creatorcontrib><creatorcontrib>Alamo, T.</creatorcontrib><creatorcontrib>Camacho, E.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiacchini, M.</au><au>Alamo, T.</au><au>Camacho, E.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant sets computation for convex difference inclusions systems</atitle><jtitle>Systems &amp; control letters</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>61</volume><issue>8</issue><spage>819</spage><epage>826</epage><pages>819-826</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><coden>SCLEDC</coden><abstract>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2012.04.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2012-08, Vol.61 (8), p.819-826
issn 0167-6911
1872-7956
language eng
recordid cdi_hal_primary_oai_HAL_hal_00984646v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boundaries
Computation
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Convex analysis
Difference inclusions
Dynamical Systems
Exact sciences and technology
Finite differences and functional equations
Inclusions
Invariance
Invariants
Linear systems
Lyapunov functions
Mathematical analysis
Mathematics
Nonlinear dynamics
Nonlinear systems
Sciences and techniques of general use
title Invariant sets computation for convex difference inclusions systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20sets%20computation%20for%20convex%20difference%20inclusions%20systems&rft.jtitle=Systems%20&%20control%20letters&rft.au=Fiacchini,%20M.&rft.date=2012-08-01&rft.volume=61&rft.issue=8&rft.spage=819&rft.epage=826&rft.pages=819-826&rft.issn=0167-6911&rft.eissn=1872-7956&rft.coden=SCLEDC&rft_id=info:doi/10.1016/j.sysconle.2012.04.012&rft_dat=%3Cproquest_hal_p%3E1082218111%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082218111&rft_id=info:pmid/&rft_els_id=S0167691112000904&rfr_iscdi=true