Invariant sets computation for convex difference inclusions systems
In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the s...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2012-08, Vol.61 (8), p.819-826 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 826 |
---|---|
container_issue | 8 |
container_start_page | 819 |
container_title | Systems & control letters |
container_volume | 61 |
creator | Fiacchini, M. Alamo, T. Camacho, E.F. |
description | In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented. |
doi_str_mv | 10.1016/j.sysconle.2012.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00984646v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691112000904</els_id><sourcerecordid>1082218111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxCygbJFgkeJzESXZUFS-pEhtYW64zEa5Su3jSiv49jlq6ZXVl-8xc6zB2AzwDDvJhmdGOjHc9ZoKDyHiRxThhE6grkVZNKU_ZJIJVKhuAc3ZBtOScC57nEzZ7c1sdrHZDQjhQYvxqvRn0YL1LOh_i2W3xJ2lt12FAZzCxzvQbiu-UxN4BV3TFzjrdE14f8pJ9Pj99zF7T-fvL22w6T01RVkNqBAA2ZZfLVssijx9AISpAWWhuULdCy4Vssa5qgxLKRZVjgwuJTVPyRaXz_JLd7_d-6V6tg13psFNeW_U6navxjvOmLmQhtxDZuz27Dv57gzSolSWDfa8d-g0p4LUQUAOMqNyjJniigN1xN3A1GlZL9WdYjYYVL1SMOHh76NBkdN8F7Yyl47SQ0JR5XUfucc9hlLO1GBQZO7psbUAzqNbb_6p-AX35lSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082218111</pqid></control><display><type>article</type><title>Invariant sets computation for convex difference inclusions systems</title><source>Elsevier ScienceDirect Journals</source><creator>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</creator><creatorcontrib>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</creatorcontrib><description>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2012.04.012</identifier><identifier>CODEN: SCLEDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Boundaries ; Computation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Convex analysis ; Difference inclusions ; Dynamical Systems ; Exact sciences and technology ; Finite differences and functional equations ; Inclusions ; Invariance ; Invariants ; Linear systems ; Lyapunov functions ; Mathematical analysis ; Mathematics ; Nonlinear dynamics ; Nonlinear systems ; Sciences and techniques of general use</subject><ispartof>Systems & control letters, 2012-08, Vol.61 (8), p.819-826</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</citedby><cites>FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</cites><orcidid>0000-0002-3601-0302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2012.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26195388$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00984646$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiacchini, M.</creatorcontrib><creatorcontrib>Alamo, T.</creatorcontrib><creatorcontrib>Camacho, E.F.</creatorcontrib><title>Invariant sets computation for convex difference inclusions systems</title><title>Systems & control letters</title><description>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Convex analysis</subject><subject>Difference inclusions</subject><subject>Dynamical Systems</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Inclusions</subject><subject>Invariance</subject><subject>Invariants</subject><subject>Linear systems</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Sciences and techniques of general use</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxCygbJFgkeJzESXZUFS-pEhtYW64zEa5Su3jSiv49jlq6ZXVl-8xc6zB2AzwDDvJhmdGOjHc9ZoKDyHiRxThhE6grkVZNKU_ZJIJVKhuAc3ZBtOScC57nEzZ7c1sdrHZDQjhQYvxqvRn0YL1LOh_i2W3xJ2lt12FAZzCxzvQbiu-UxN4BV3TFzjrdE14f8pJ9Pj99zF7T-fvL22w6T01RVkNqBAA2ZZfLVssijx9AISpAWWhuULdCy4Vssa5qgxLKRZVjgwuJTVPyRaXz_JLd7_d-6V6tg13psFNeW_U6navxjvOmLmQhtxDZuz27Dv57gzSolSWDfa8d-g0p4LUQUAOMqNyjJniigN1xN3A1GlZL9WdYjYYVL1SMOHh76NBkdN8F7Yyl47SQ0JR5XUfucc9hlLO1GBQZO7psbUAzqNbb_6p-AX35lSw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Fiacchini, M.</creator><creator>Alamo, T.</creator><creator>Camacho, E.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid></search><sort><creationdate>20120801</creationdate><title>Invariant sets computation for convex difference inclusions systems</title><author>Fiacchini, M. ; Alamo, T. ; Camacho, E.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c211e95f36da643020e2271e64a0cead2a6b6de878ce615b73e9eb6e9950b7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Convex analysis</topic><topic>Difference inclusions</topic><topic>Dynamical Systems</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Inclusions</topic><topic>Invariance</topic><topic>Invariants</topic><topic>Linear systems</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiacchini, M.</creatorcontrib><creatorcontrib>Alamo, T.</creatorcontrib><creatorcontrib>Camacho, E.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems & control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiacchini, M.</au><au>Alamo, T.</au><au>Camacho, E.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant sets computation for convex difference inclusions systems</atitle><jtitle>Systems & control letters</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>61</volume><issue>8</issue><spage>819</spage><epage>826</epage><pages>819-826</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><coden>SCLEDC</coden><abstract>In this paper we introduce the Convex Difference Inclusion (CDI) systems as a modeling framework useful to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems. Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context. A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems, based on the properties of the CDI systems, is presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2012.04.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6911 |
ispartof | Systems & control letters, 2012-08, Vol.61 (8), p.819-826 |
issn | 0167-6911 1872-7956 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00984646v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boundaries Computation Computer science control theory systems Control system analysis Control theory. Systems Convex analysis Difference inclusions Dynamical Systems Exact sciences and technology Finite differences and functional equations Inclusions Invariance Invariants Linear systems Lyapunov functions Mathematical analysis Mathematics Nonlinear dynamics Nonlinear systems Sciences and techniques of general use |
title | Invariant sets computation for convex difference inclusions systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20sets%20computation%20for%20convex%20difference%20inclusions%20systems&rft.jtitle=Systems%20&%20control%20letters&rft.au=Fiacchini,%20M.&rft.date=2012-08-01&rft.volume=61&rft.issue=8&rft.spage=819&rft.epage=826&rft.pages=819-826&rft.issn=0167-6911&rft.eissn=1872-7956&rft.coden=SCLEDC&rft_id=info:doi/10.1016/j.sysconle.2012.04.012&rft_dat=%3Cproquest_hal_p%3E1082218111%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082218111&rft_id=info:pmid/&rft_els_id=S0167691112000904&rfr_iscdi=true |