Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors

► The self-heating of SiGe HBTs has been studied through 3D TCAD simulations and pulse measurements. ► The influence of back-end metallization on RTH and CTH are investigated. ► Recursive network is verified with thermal modeling and found to be in excellent agreement. In this paper, a comprehensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid-state electronics 2012-08, Vol.74, p.77-84
Hauptverfasser: Sahoo, Amit Kumar, Weiß, Mario, Fregonese, Sébastien, Malbert, Nathalie, Zimmer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 77
container_title Solid-state electronics
container_volume 74
creator Sahoo, Amit Kumar
Weiß, Mario
Fregonese, Sébastien
Malbert, Nathalie
Zimmer, Thomas
description ► The self-heating of SiGe HBTs has been studied through 3D TCAD simulations and pulse measurements. ► The influence of back-end metallization on RTH and CTH are investigated. ► Recursive network is verified with thermal modeling and found to be in excellent agreement. In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230GHz and 290GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R–C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.
doi_str_mv 10.1016/j.sse.2012.04.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00978809v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038110112000925</els_id><sourcerecordid>1082217148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e2ce606109bc6647f4235089ec9c9b75b9242f8cf0810a04fd746a5f1c84228e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4G2Peth1ks3uZvFUirZCwYMVvIVsOktTtpuapIKefAff0CcxbcWjp8Dk-39mPkIuKWQUaHmzyrzHjAFlGfAMaHFEBlRUdco4FMdkAJCLlEb0lJx5vwIAVlIYkJe5U7032IcEO9TB2TQs0a1Vl-ilckoHdOZDBWP7xLbJk_n-_JpgssQ4t6ttr_c_jdnYTrkk7Mt8sM6fk5NWdR4vft8heb6_m4-n6exx8jAezVKdlzykyDSWEFepG12WvGo5ywsQNepa101VNDXjrBW6BUFBAW8XFS9V0VItOGMC8yG5PvQuVSc3zqyVe5dWGTkdzeRuBlBXQkD9RiN7dWA3zr5u0Qe5Nl5j16ke7dZLCoIxWlEuIkoPqHbWe4ftXzcFuTMuVzIalzvjEriMxmPm9pDBeO-bQSe9jmY1LoyLauXCmn_SP7ZJii8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082217148</pqid></control><display><type>article</type><title>Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sahoo, Amit Kumar ; Weiß, Mario ; Fregonese, Sébastien ; Malbert, Nathalie ; Zimmer, Thomas</creator><creatorcontrib>Sahoo, Amit Kumar ; Weiß, Mario ; Fregonese, Sébastien ; Malbert, Nathalie ; Zimmer, Thomas</creatorcontrib><description>► The self-heating of SiGe HBTs has been studied through 3D TCAD simulations and pulse measurements. ► The influence of back-end metallization on RTH and CTH are investigated. ► Recursive network is verified with thermal modeling and found to be in excellent agreement. In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230GHz and 290GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R–C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.</description><identifier>ISSN: 0038-1101</identifier><identifier>EISSN: 1879-2405</identifier><identifier>DOI: 10.1016/j.sse.2012.04.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bipolar transistors ; Computer simulation ; Electro-thermal effects ; Engineering Sciences ; Heterojunction bipolar transistors ; Micro and nanotechnologies ; Microelectronics ; Microwaves ; Networks ; Numerical simulation ; Pulse measurement ; Recursive ; Semiconductor device modeling ; Semiconductor devices ; Silicon germanides ; Simulation ; Thermal capacitance ; Thermal resistance</subject><ispartof>Solid-state electronics, 2012-08, Vol.74, p.77-84</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e2ce606109bc6647f4235089ec9c9b75b9242f8cf0810a04fd746a5f1c84228e3</citedby><cites>FETCH-LOGICAL-c364t-e2ce606109bc6647f4235089ec9c9b75b9242f8cf0810a04fd746a5f1c84228e3</cites><orcidid>0000-0002-1829-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sse.2012.04.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00978809$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahoo, Amit Kumar</creatorcontrib><creatorcontrib>Weiß, Mario</creatorcontrib><creatorcontrib>Fregonese, Sébastien</creatorcontrib><creatorcontrib>Malbert, Nathalie</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><title>Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors</title><title>Solid-state electronics</title><description>► The self-heating of SiGe HBTs has been studied through 3D TCAD simulations and pulse measurements. ► The influence of back-end metallization on RTH and CTH are investigated. ► Recursive network is verified with thermal modeling and found to be in excellent agreement. In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230GHz and 290GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R–C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.</description><subject>Bipolar transistors</subject><subject>Computer simulation</subject><subject>Electro-thermal effects</subject><subject>Engineering Sciences</subject><subject>Heterojunction bipolar transistors</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microwaves</subject><subject>Networks</subject><subject>Numerical simulation</subject><subject>Pulse measurement</subject><subject>Recursive</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Silicon germanides</subject><subject>Simulation</subject><subject>Thermal capacitance</subject><subject>Thermal resistance</subject><issn>0038-1101</issn><issn>1879-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4G2Peth1ks3uZvFUirZCwYMVvIVsOktTtpuapIKefAff0CcxbcWjp8Dk-39mPkIuKWQUaHmzyrzHjAFlGfAMaHFEBlRUdco4FMdkAJCLlEb0lJx5vwIAVlIYkJe5U7032IcEO9TB2TQs0a1Vl-ilckoHdOZDBWP7xLbJk_n-_JpgssQ4t6ttr_c_jdnYTrkk7Mt8sM6fk5NWdR4vft8heb6_m4-n6exx8jAezVKdlzykyDSWEFepG12WvGo5ywsQNepa101VNDXjrBW6BUFBAW8XFS9V0VItOGMC8yG5PvQuVSc3zqyVe5dWGTkdzeRuBlBXQkD9RiN7dWA3zr5u0Qe5Nl5j16ke7dZLCoIxWlEuIkoPqHbWe4ftXzcFuTMuVzIalzvjEriMxmPm9pDBeO-bQSe9jmY1LoyLauXCmn_SP7ZJii8</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Sahoo, Amit Kumar</creator><creator>Weiß, Mario</creator><creator>Fregonese, Sébastien</creator><creator>Malbert, Nathalie</creator><creator>Zimmer, Thomas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></search><sort><creationdate>201208</creationdate><title>Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors</title><author>Sahoo, Amit Kumar ; Weiß, Mario ; Fregonese, Sébastien ; Malbert, Nathalie ; Zimmer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e2ce606109bc6647f4235089ec9c9b75b9242f8cf0810a04fd746a5f1c84228e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bipolar transistors</topic><topic>Computer simulation</topic><topic>Electro-thermal effects</topic><topic>Engineering Sciences</topic><topic>Heterojunction bipolar transistors</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microwaves</topic><topic>Networks</topic><topic>Numerical simulation</topic><topic>Pulse measurement</topic><topic>Recursive</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Silicon germanides</topic><topic>Simulation</topic><topic>Thermal capacitance</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Amit Kumar</creatorcontrib><creatorcontrib>Weiß, Mario</creatorcontrib><creatorcontrib>Fregonese, Sébastien</creatorcontrib><creatorcontrib>Malbert, Nathalie</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Solid-state electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Amit Kumar</au><au>Weiß, Mario</au><au>Fregonese, Sébastien</au><au>Malbert, Nathalie</au><au>Zimmer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors</atitle><jtitle>Solid-state electronics</jtitle><date>2012-08</date><risdate>2012</risdate><volume>74</volume><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0038-1101</issn><eissn>1879-2405</eissn><abstract>► The self-heating of SiGe HBTs has been studied through 3D TCAD simulations and pulse measurements. ► The influence of back-end metallization on RTH and CTH are investigated. ► Recursive network is verified with thermal modeling and found to be in excellent agreement. In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230GHz and 290GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R–C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.sse.2012.04.015</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-1101
ispartof Solid-state electronics, 2012-08, Vol.74, p.77-84
issn 0038-1101
1879-2405
language eng
recordid cdi_hal_primary_oai_HAL_hal_00978809v1
source Elsevier ScienceDirect Journals Complete
subjects Bipolar transistors
Computer simulation
Electro-thermal effects
Engineering Sciences
Heterojunction bipolar transistors
Micro and nanotechnologies
Microelectronics
Microwaves
Networks
Numerical simulation
Pulse measurement
Recursive
Semiconductor device modeling
Semiconductor devices
Silicon germanides
Simulation
Thermal capacitance
Thermal resistance
title Transient electro-thermal characterization of Si–Ge heterojunction bipolar transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20electro-thermal%20characterization%20of%20Si%E2%80%93Ge%20heterojunction%20bipolar%20transistors&rft.jtitle=Solid-state%20electronics&rft.au=Sahoo,%20Amit%20Kumar&rft.date=2012-08&rft.volume=74&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0038-1101&rft.eissn=1879-2405&rft_id=info:doi/10.1016/j.sse.2012.04.015&rft_dat=%3Cproquest_hal_p%3E1082217148%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082217148&rft_id=info:pmid/&rft_els_id=S0038110112000925&rfr_iscdi=true