Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)

A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2011, Vol.35 (6), p.1270-1279
Hauptverfasser: Borta, Ana, Jeanneau, Erwann, Chumakov, Yuri, Luneau, Dominique, Ungur, Liviu, Chibotaru, Liviu F., Wernsdorfer, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 6
container_start_page 1270
container_title New journal of chemistry
container_volume 35
creator Borta, Ana
Jeanneau, Erwann
Chumakov, Yuri
Luneau, Dominique
Ungur, Liviu
Chibotaru, Liviu F.
Wernsdorfer, Wolfgang
description A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterized. All compounds are isomorphs and may be viewed as a hexanuclear central core sandwiched in between two lateral dinuclear copper units. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization were investigated on polycrystalline samples. The yttrium compound 1 showed an overall behavior dominated by an antiferromagnetic interaction between the copper ions, while for compounds 2-4 the magnetic behavior indicated the addition of a ferromagnetic interaction with the lanthanide ions. The magnetic properties were computationally studied by means of fragment ab initio calculations. The calculation on the yttrium complex allowed determining the strength and sign of the Cu center dot center dot center dot Cu magnetic interactions considering three antiferromagnetic coupling constants: two within the central (J(3) = -44 cm(-1)) and the lateral (J(4) = -40 cm(-1)) copper dinuclear unit, and one (J(5) = -24 cm(-1)) between the lateral and the central copper. Simulation of the magnetic behavior of the Dy (4) compound gave J(1) = +0.25 cm(-1) for Dy-Dy and J(2) = +2.0 cm(-1) for Dy-Cu pairs. The calculated g tensors of the copper(II) ions were found to be quite anisotropic and contributed via anisotropic exchange interactions, together with zero-field (crystal field) splitting on Ln, to the weak single-molecule magnet (SMM) behavior of 2, 3 and 4. Among them, the highest coercivity was found in the gadolinium complex (2), despite the fact that it is much less anisotropic than the other two. We explain this surprising result by a higher multiplicity of the ground spin term in 2 compared to the ground manifolds of states in 3 and 4. Besides, due to relatively large Cu-Gd interaction, the ground exchange term in 2 has enough separation from excited exchange terms, which makes the barrier of reversal of magnetization efficient in this complex
doi_str_mv 10.1039/c0nj00931h
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00978611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00978611v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-fb82514613777ae8a4e8920b000030139db36260278ac12be6a88af517da13b83</originalsourceid><addsrcrecordid>eNpFkLFOwzAQhi0EEqWw8AQeG5SAL04cZ2CoCrRIkRgoA0IochyHGKVJZSdAHoJ3xlUR3HL_3f_dDT9C50AugdD0SpL2nZCUQn2AJkBZGqQhg0OnIYoCEkfsGJ1Y6xiAhMEEfT-ObV8rq62PbW8G2Q9G-Xgj3lrVa7vBoi2xAzrjRikaBw3liLsKC2yV0crutOw220Z9ueFT97WzSiVFO8hGCeNMo_BL1s601l64GFz3-CueZS2-xs8-XpY-Xhc-vhm9U3RUicaqs98-RU93t-vFKsgelveLeRbIkMV9UBU8jCFiQJMkEYqLSPE0JAVxRQnQtCwoCxkJEy4khIVignNRxZCUAmjB6RR5-7-1aPKt0RthxrwTOl_Ns3y3cxkmnAF8gGMv9qw0nbVGVX8HQPJd6Pl_6PQH6SJyPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Borta, Ana ; Jeanneau, Erwann ; Chumakov, Yuri ; Luneau, Dominique ; Ungur, Liviu ; Chibotaru, Liviu F. ; Wernsdorfer, Wolfgang</creator><creatorcontrib>Borta, Ana ; Jeanneau, Erwann ; Chumakov, Yuri ; Luneau, Dominique ; Ungur, Liviu ; Chibotaru, Liviu F. ; Wernsdorfer, Wolfgang</creatorcontrib><description>A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterized. All compounds are isomorphs and may be viewed as a hexanuclear central core sandwiched in between two lateral dinuclear copper units. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization were investigated on polycrystalline samples. The yttrium compound 1 showed an overall behavior dominated by an antiferromagnetic interaction between the copper ions, while for compounds 2-4 the magnetic behavior indicated the addition of a ferromagnetic interaction with the lanthanide ions. The magnetic properties were computationally studied by means of fragment ab initio calculations. The calculation on the yttrium complex allowed determining the strength and sign of the Cu center dot center dot center dot Cu magnetic interactions considering three antiferromagnetic coupling constants: two within the central (J(3) = -44 cm(-1)) and the lateral (J(4) = -40 cm(-1)) copper dinuclear unit, and one (J(5) = -24 cm(-1)) between the lateral and the central copper. Simulation of the magnetic behavior of the Dy (4) compound gave J(1) = +0.25 cm(-1) for Dy-Dy and J(2) = +2.0 cm(-1) for Dy-Cu pairs. The calculated g tensors of the copper(II) ions were found to be quite anisotropic and contributed via anisotropic exchange interactions, together with zero-field (crystal field) splitting on Ln, to the weak single-molecule magnet (SMM) behavior of 2, 3 and 4. Among them, the highest coercivity was found in the gadolinium complex (2), despite the fact that it is much less anisotropic than the other two. We explain this surprising result by a higher multiplicity of the ground spin term in 2 compared to the ground manifolds of states in 3 and 4. Besides, due to relatively large Cu-Gd interaction, the ground exchange term in 2 has enough separation from excited exchange terms, which makes the barrier of reversal of magnetization efficient in this complex</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/c0nj00931h</identifier><language>eng</language><publisher>Royal Society of Chemistry [1987-....]</publisher><subject>Engineering Sciences</subject><ispartof>New journal of chemistry, 2011, Vol.35 (6), p.1270-1279</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-fb82514613777ae8a4e8920b000030139db36260278ac12be6a88af517da13b83</citedby><cites>FETCH-LOGICAL-c265t-fb82514613777ae8a4e8920b000030139db36260278ac12be6a88af517da13b83</cites><orcidid>0000-0002-1831-7693 ; 0000-0002-8861-4140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00978611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borta, Ana</creatorcontrib><creatorcontrib>Jeanneau, Erwann</creatorcontrib><creatorcontrib>Chumakov, Yuri</creatorcontrib><creatorcontrib>Luneau, Dominique</creatorcontrib><creatorcontrib>Ungur, Liviu</creatorcontrib><creatorcontrib>Chibotaru, Liviu F.</creatorcontrib><creatorcontrib>Wernsdorfer, Wolfgang</creatorcontrib><title>Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)</title><title>New journal of chemistry</title><description>A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterized. All compounds are isomorphs and may be viewed as a hexanuclear central core sandwiched in between two lateral dinuclear copper units. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization were investigated on polycrystalline samples. The yttrium compound 1 showed an overall behavior dominated by an antiferromagnetic interaction between the copper ions, while for compounds 2-4 the magnetic behavior indicated the addition of a ferromagnetic interaction with the lanthanide ions. The magnetic properties were computationally studied by means of fragment ab initio calculations. The calculation on the yttrium complex allowed determining the strength and sign of the Cu center dot center dot center dot Cu magnetic interactions considering three antiferromagnetic coupling constants: two within the central (J(3) = -44 cm(-1)) and the lateral (J(4) = -40 cm(-1)) copper dinuclear unit, and one (J(5) = -24 cm(-1)) between the lateral and the central copper. Simulation of the magnetic behavior of the Dy (4) compound gave J(1) = +0.25 cm(-1) for Dy-Dy and J(2) = +2.0 cm(-1) for Dy-Cu pairs. The calculated g tensors of the copper(II) ions were found to be quite anisotropic and contributed via anisotropic exchange interactions, together with zero-field (crystal field) splitting on Ln, to the weak single-molecule magnet (SMM) behavior of 2, 3 and 4. Among them, the highest coercivity was found in the gadolinium complex (2), despite the fact that it is much less anisotropic than the other two. We explain this surprising result by a higher multiplicity of the ground spin term in 2 compared to the ground manifolds of states in 3 and 4. Besides, due to relatively large Cu-Gd interaction, the ground exchange term in 2 has enough separation from excited exchange terms, which makes the barrier of reversal of magnetization efficient in this complex</description><subject>Engineering Sciences</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkLFOwzAQhi0EEqWw8AQeG5SAL04cZ2CoCrRIkRgoA0IochyHGKVJZSdAHoJ3xlUR3HL_3f_dDT9C50AugdD0SpL2nZCUQn2AJkBZGqQhg0OnIYoCEkfsGJ1Y6xiAhMEEfT-ObV8rq62PbW8G2Q9G-Xgj3lrVa7vBoi2xAzrjRikaBw3liLsKC2yV0crutOw220Z9ueFT97WzSiVFO8hGCeNMo_BL1s601l64GFz3-CueZS2-xs8-XpY-Xhc-vhm9U3RUicaqs98-RU93t-vFKsgelveLeRbIkMV9UBU8jCFiQJMkEYqLSPE0JAVxRQnQtCwoCxkJEy4khIVignNRxZCUAmjB6RR5-7-1aPKt0RthxrwTOl_Ns3y3cxkmnAF8gGMv9qw0nbVGVX8HQPJd6Pl_6PQH6SJyPw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Borta, Ana</creator><creator>Jeanneau, Erwann</creator><creator>Chumakov, Yuri</creator><creator>Luneau, Dominique</creator><creator>Ungur, Liviu</creator><creator>Chibotaru, Liviu F.</creator><creator>Wernsdorfer, Wolfgang</creator><general>Royal Society of Chemistry [1987-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1831-7693</orcidid><orcidid>https://orcid.org/0000-0002-8861-4140</orcidid></search><sort><creationdate>2011</creationdate><title>Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)</title><author>Borta, Ana ; Jeanneau, Erwann ; Chumakov, Yuri ; Luneau, Dominique ; Ungur, Liviu ; Chibotaru, Liviu F. ; Wernsdorfer, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-fb82514613777ae8a4e8920b000030139db36260278ac12be6a88af517da13b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borta, Ana</creatorcontrib><creatorcontrib>Jeanneau, Erwann</creatorcontrib><creatorcontrib>Chumakov, Yuri</creatorcontrib><creatorcontrib>Luneau, Dominique</creatorcontrib><creatorcontrib>Ungur, Liviu</creatorcontrib><creatorcontrib>Chibotaru, Liviu F.</creatorcontrib><creatorcontrib>Wernsdorfer, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borta, Ana</au><au>Jeanneau, Erwann</au><au>Chumakov, Yuri</au><au>Luneau, Dominique</au><au>Ungur, Liviu</au><au>Chibotaru, Liviu F.</au><au>Wernsdorfer, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)</atitle><jtitle>New journal of chemistry</jtitle><date>2011</date><risdate>2011</risdate><volume>35</volume><issue>6</issue><spage>1270</spage><epage>1279</epage><pages>1270-1279</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>A family of four isomorph complexes with a decanuclear [Cu(8)Ln(2)] core of general formula [Ln(2)Cu(8)(mu-PyO)(12)(mu(4)-O)(2)(mu-Cl)(2)Cl-4(H2O)(2)]center dot nH(2)O [Ln(III) = Y(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4); 2-PyOH = 2-hydroxypyridine] was isolated and structurally characterized. All compounds are isomorphs and may be viewed as a hexanuclear central core sandwiched in between two lateral dinuclear copper units. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization were investigated on polycrystalline samples. The yttrium compound 1 showed an overall behavior dominated by an antiferromagnetic interaction between the copper ions, while for compounds 2-4 the magnetic behavior indicated the addition of a ferromagnetic interaction with the lanthanide ions. The magnetic properties were computationally studied by means of fragment ab initio calculations. The calculation on the yttrium complex allowed determining the strength and sign of the Cu center dot center dot center dot Cu magnetic interactions considering three antiferromagnetic coupling constants: two within the central (J(3) = -44 cm(-1)) and the lateral (J(4) = -40 cm(-1)) copper dinuclear unit, and one (J(5) = -24 cm(-1)) between the lateral and the central copper. Simulation of the magnetic behavior of the Dy (4) compound gave J(1) = +0.25 cm(-1) for Dy-Dy and J(2) = +2.0 cm(-1) for Dy-Cu pairs. The calculated g tensors of the copper(II) ions were found to be quite anisotropic and contributed via anisotropic exchange interactions, together with zero-field (crystal field) splitting on Ln, to the weak single-molecule magnet (SMM) behavior of 2, 3 and 4. Among them, the highest coercivity was found in the gadolinium complex (2), despite the fact that it is much less anisotropic than the other two. We explain this surprising result by a higher multiplicity of the ground spin term in 2 compared to the ground manifolds of states in 3 and 4. Besides, due to relatively large Cu-Gd interaction, the ground exchange term in 2 has enough separation from excited exchange terms, which makes the barrier of reversal of magnetization efficient in this complex</abstract><pub>Royal Society of Chemistry [1987-....]</pub><doi>10.1039/c0nj00931h</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1831-7693</orcidid><orcidid>https://orcid.org/0000-0002-8861-4140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2011, Vol.35 (6), p.1270-1279
issn 1144-0546
1369-9261
language eng
recordid cdi_hal_primary_oai_HAL_hal_00978611v1
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Engineering Sciences
title Synthesis, structure, magnetism and theoretical study of a series of complexes with a decanuclear core [Ln(iii)2Cu(ii)8] (Ln = Y, Gd, Tb, Dy)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structure,%20magnetism%20and%20theoretical%20study%20of%20a%20series%20of%20complexes%20with%20a%20decanuclear%20core%20%5BLn(iii)2Cu(ii)8%5D%20(Ln%20=%20Y,%20Gd,%20Tb,%20Dy)&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Borta,%20Ana&rft.date=2011&rft.volume=35&rft.issue=6&rft.spage=1270&rft.epage=1279&rft.pages=1270-1279&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/c0nj00931h&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00978611v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true