Incremental inconsistency detection with low memory overhead

SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2014-05, Vol.44 (5), p.621-641
Hauptverfasser: Falleri, Jean-Rémy, Blanc, Xavier, Bendraou, Reda, da Silva, Marcos Aurélio Almeida, Teyton, Cédric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 5
container_start_page 621
container_title Software, practice & experience
container_volume 44
creator Falleri, Jean-Rémy
Blanc, Xavier
Bendraou, Reda
da Silva, Marcos Aurélio Almeida
Teyton, Cédric
description SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/spe.2171
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00975337v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541424213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs4p-CcUfNGH6l2SNhn4IqJOmD9AQfElxOzKqm0zk865_96OiaIgHBwcH467L2O7CIcIwI_ilA45KlxjPYSBSoHLx3XWAxA6hVzKTbYV4wsAYsbzHju-bFygmprWVknZON_EMrbUuEUyppZcW_ommZftJKn8PKmp9mGR-HcKE7LjbbZR2CrSzlfvs_vzs_vTYTq6ubg8PRmlTgqOaZ5bC1zTmGyRk3KQI8hnIUmDKMY6E4pQDqzWsnAKCERGOifkGqwlrUSfHazWTmxlpqGsbVgYb0szPBmZ5Qy6RzMh1Dt2dn9lp8G_zSi2pi6jo6qyDflZNJhJlFxyFB3d-0Nf_Cw03SOdQj7oSsifhS74GAMV3xcgmGXipkvcLBPvaLqi87Kixb_O3N2e_fbLxD--vQ2vJldCZebh-sI8notrIZ64uRKfN-WO4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512912934</pqid></control><display><type>article</type><title>Incremental inconsistency detection with low memory overhead</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</creator><creatorcontrib>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</creatorcontrib><description>SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2171</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Computer programs ; Computer Science ; Consistency ; Consumption ; Expenses ; logic programming ; model consistency ; model driven engineering ; program analysis ; Software ; Software Engineering ; Sound</subject><ispartof>Software, practice &amp; experience, 2014-05, Vol.44 (5), p.621-641</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</citedby><cites>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</cites><orcidid>0000-0002-8284-7218 ; 0000-0003-1783-0708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00975337$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Falleri, Jean-Rémy</creatorcontrib><creatorcontrib>Blanc, Xavier</creatorcontrib><creatorcontrib>Bendraou, Reda</creatorcontrib><creatorcontrib>da Silva, Marcos Aurélio Almeida</creatorcontrib><creatorcontrib>Teyton, Cédric</creatorcontrib><title>Incremental inconsistency detection with low memory overhead</title><title>Software, practice &amp; experience</title><addtitle>Softw. Pract. Exper</addtitle><description>SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Computer programs</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Consumption</subject><subject>Expenses</subject><subject>logic programming</subject><subject>model consistency</subject><subject>model driven engineering</subject><subject>program analysis</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Sound</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AgCs4p-CcUfNGH6l2SNhn4IqJOmD9AQfElxOzKqm0zk865_96OiaIgHBwcH467L2O7CIcIwI_ilA45KlxjPYSBSoHLx3XWAxA6hVzKTbYV4wsAYsbzHju-bFygmprWVknZON_EMrbUuEUyppZcW_ommZftJKn8PKmp9mGR-HcKE7LjbbZR2CrSzlfvs_vzs_vTYTq6ubg8PRmlTgqOaZ5bC1zTmGyRk3KQI8hnIUmDKMY6E4pQDqzWsnAKCERGOifkGqwlrUSfHazWTmxlpqGsbVgYb0szPBmZ5Qy6RzMh1Dt2dn9lp8G_zSi2pi6jo6qyDflZNJhJlFxyFB3d-0Nf_Cw03SOdQj7oSsifhS74GAMV3xcgmGXipkvcLBPvaLqi87Kixb_O3N2e_fbLxD--vQ2vJldCZebh-sI8notrIZ64uRKfN-WO4Q</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Falleri, Jean-Rémy</creator><creator>Blanc, Xavier</creator><creator>Bendraou, Reda</creator><creator>da Silva, Marcos Aurélio Almeida</creator><creator>Teyton, Cédric</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8284-7218</orcidid><orcidid>https://orcid.org/0000-0003-1783-0708</orcidid></search><sort><creationdate>201405</creationdate><title>Incremental inconsistency detection with low memory overhead</title><author>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer programs</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Consumption</topic><topic>Expenses</topic><topic>logic programming</topic><topic>model consistency</topic><topic>model driven engineering</topic><topic>program analysis</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falleri, Jean-Rémy</creatorcontrib><creatorcontrib>Blanc, Xavier</creatorcontrib><creatorcontrib>Bendraou, Reda</creatorcontrib><creatorcontrib>da Silva, Marcos Aurélio Almeida</creatorcontrib><creatorcontrib>Teyton, Cédric</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falleri, Jean-Rémy</au><au>Blanc, Xavier</au><au>Bendraou, Reda</au><au>da Silva, Marcos Aurélio Almeida</au><au>Teyton, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental inconsistency detection with low memory overhead</atitle><jtitle>Software, practice &amp; experience</jtitle><addtitle>Softw. Pract. Exper</addtitle><date>2014-05</date><risdate>2014</risdate><volume>44</volume><issue>5</issue><spage>621</spage><epage>641</epage><pages>621-641</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/spe.2171</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8284-7218</orcidid><orcidid>https://orcid.org/0000-0003-1783-0708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2014-05, Vol.44 (5), p.621-641
issn 0038-0644
1097-024X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00975337v1
source Wiley Online Library Journals Frontfile Complete
subjects Computer programs
Computer Science
Consistency
Consumption
Expenses
logic programming
model consistency
model driven engineering
program analysis
Software
Software Engineering
Sound
title Incremental inconsistency detection with low memory overhead
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20inconsistency%20detection%20with%20low%20memory%20overhead&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Falleri,%20Jean-R%C3%A9my&rft.date=2014-05&rft.volume=44&rft.issue=5&rft.spage=621&rft.epage=641&rft.pages=621-641&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2171&rft_dat=%3Cproquest_hal_p%3E1541424213%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512912934&rft_id=info:pmid/&rfr_iscdi=true