Incremental inconsistency detection with low memory overhead
SUMMARY Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection...
Gespeichert in:
Veröffentlicht in: | Software, practice & experience practice & experience, 2014-05, Vol.44 (5), p.621-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 5 |
container_start_page | 621 |
container_title | Software, practice & experience |
container_volume | 44 |
creator | Falleri, Jean-Rémy Blanc, Xavier Bendraou, Reda da Silva, Marcos Aurélio Almeida Teyton, Cédric |
description | SUMMARY
Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/spe.2171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00975337v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541424213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs4p-CcUfNGH6l2SNhn4IqJOmD9AQfElxOzKqm0zk865_96OiaIgHBwcH467L2O7CIcIwI_ilA45KlxjPYSBSoHLx3XWAxA6hVzKTbYV4wsAYsbzHju-bFygmprWVknZON_EMrbUuEUyppZcW_ommZftJKn8PKmp9mGR-HcKE7LjbbZR2CrSzlfvs_vzs_vTYTq6ubg8PRmlTgqOaZ5bC1zTmGyRk3KQI8hnIUmDKMY6E4pQDqzWsnAKCERGOifkGqwlrUSfHazWTmxlpqGsbVgYb0szPBmZ5Qy6RzMh1Dt2dn9lp8G_zSi2pi6jo6qyDflZNJhJlFxyFB3d-0Nf_Cw03SOdQj7oSsifhS74GAMV3xcgmGXipkvcLBPvaLqi87Kixb_O3N2e_fbLxD--vQ2vJldCZebh-sI8notrIZ64uRKfN-WO4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512912934</pqid></control><display><type>article</type><title>Incremental inconsistency detection with low memory overhead</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</creator><creatorcontrib>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</creatorcontrib><description>SUMMARY
Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2171</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Computer programs ; Computer Science ; Consistency ; Consumption ; Expenses ; logic programming ; model consistency ; model driven engineering ; program analysis ; Software ; Software Engineering ; Sound</subject><ispartof>Software, practice & experience, 2014-05, Vol.44 (5), p.621-641</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</citedby><cites>FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</cites><orcidid>0000-0002-8284-7218 ; 0000-0003-1783-0708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00975337$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Falleri, Jean-Rémy</creatorcontrib><creatorcontrib>Blanc, Xavier</creatorcontrib><creatorcontrib>Bendraou, Reda</creatorcontrib><creatorcontrib>da Silva, Marcos Aurélio Almeida</creatorcontrib><creatorcontrib>Teyton, Cédric</creatorcontrib><title>Incremental inconsistency detection with low memory overhead</title><title>Software, practice & experience</title><addtitle>Softw. Pract. Exper</addtitle><description>SUMMARY
Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>Computer programs</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Consumption</subject><subject>Expenses</subject><subject>logic programming</subject><subject>model consistency</subject><subject>model driven engineering</subject><subject>program analysis</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Sound</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AgCs4p-CcUfNGH6l2SNhn4IqJOmD9AQfElxOzKqm0zk865_96OiaIgHBwcH467L2O7CIcIwI_ilA45KlxjPYSBSoHLx3XWAxA6hVzKTbYV4wsAYsbzHju-bFygmprWVknZON_EMrbUuEUyppZcW_ommZftJKn8PKmp9mGR-HcKE7LjbbZR2CrSzlfvs_vzs_vTYTq6ubg8PRmlTgqOaZ5bC1zTmGyRk3KQI8hnIUmDKMY6E4pQDqzWsnAKCERGOifkGqwlrUSfHazWTmxlpqGsbVgYb0szPBmZ5Qy6RzMh1Dt2dn9lp8G_zSi2pi6jo6qyDflZNJhJlFxyFB3d-0Nf_Cw03SOdQj7oSsifhS74GAMV3xcgmGXipkvcLBPvaLqi87Kixb_O3N2e_fbLxD--vQ2vJldCZebh-sI8notrIZ64uRKfN-WO4Q</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Falleri, Jean-Rémy</creator><creator>Blanc, Xavier</creator><creator>Bendraou, Reda</creator><creator>da Silva, Marcos Aurélio Almeida</creator><creator>Teyton, Cédric</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8284-7218</orcidid><orcidid>https://orcid.org/0000-0003-1783-0708</orcidid></search><sort><creationdate>201405</creationdate><title>Incremental inconsistency detection with low memory overhead</title><author>Falleri, Jean-Rémy ; Blanc, Xavier ; Bendraou, Reda ; da Silva, Marcos Aurélio Almeida ; Teyton, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-66aa028edeaf6e7c06104b34e803fd8537e149a884fc70e035e86e1280aae873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer programs</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Consumption</topic><topic>Expenses</topic><topic>logic programming</topic><topic>model consistency</topic><topic>model driven engineering</topic><topic>program analysis</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falleri, Jean-Rémy</creatorcontrib><creatorcontrib>Blanc, Xavier</creatorcontrib><creatorcontrib>Bendraou, Reda</creatorcontrib><creatorcontrib>da Silva, Marcos Aurélio Almeida</creatorcontrib><creatorcontrib>Teyton, Cédric</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Software, practice & experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falleri, Jean-Rémy</au><au>Blanc, Xavier</au><au>Bendraou, Reda</au><au>da Silva, Marcos Aurélio Almeida</au><au>Teyton, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental inconsistency detection with low memory overhead</atitle><jtitle>Software, practice & experience</jtitle><addtitle>Softw. Pract. Exper</addtitle><date>2014-05</date><risdate>2014</risdate><volume>44</volume><issue>5</issue><spage>621</spage><epage>641</epage><pages>621-641</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>SUMMARY
Ensuring models’ consistency is a key concern when using a model‐based development approach. Therefore, model inconsistency detection has received significant attention over the last years. To be useful, inconsistency detection has to be sound, efficient, and scalable. Incremental detection is one way to achieve efficiency in the presence of large models. In most of the existing approaches, incrementalization is carried out at the expense of the memory consumption that becomes proportional to the model size and the number of consistency rules. In this paper, we propose a new incremental inconsistency detection approach that only consumes a small and model size‐independent amount of memory. It will therefore scale better to projects using large models and many consistency rules. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/spe.2171</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8284-7218</orcidid><orcidid>https://orcid.org/0000-0003-1783-0708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0644 |
ispartof | Software, practice & experience, 2014-05, Vol.44 (5), p.621-641 |
issn | 0038-0644 1097-024X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00975337v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computer programs Computer Science Consistency Consumption Expenses logic programming model consistency model driven engineering program analysis Software Software Engineering Sound |
title | Incremental inconsistency detection with low memory overhead |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20inconsistency%20detection%20with%20low%20memory%20overhead&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Falleri,%20Jean-R%C3%A9my&rft.date=2014-05&rft.volume=44&rft.issue=5&rft.spage=621&rft.epage=641&rft.pages=621-641&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2171&rft_dat=%3Cproquest_hal_p%3E1541424213%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512912934&rft_id=info:pmid/&rfr_iscdi=true |