CSN- and CAND1-dependent remodelling of the budding yeast SCF complex

Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013, Vol.4 (1), p.1641-1641, Article 1641
Hauptverfasser: Zemla, Aleksandra, Thomas, Yann, Kedziora, Sylwia, Knebel, Axel, Wood, Nicola T., Rabut, Gwenaël, Kurz, Thimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1641
container_issue 1
container_start_page 1641
container_title Nature communications
container_volume 4
creator Zemla, Aleksandra
Thomas, Yann
Kedziora, Sylwia
Knebel, Axel
Wood, Nicola T.
Rabut, Gwenaël
Kurz, Thimo
description Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation–deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. CAND1 promotes the activity of Cullin–RING ubiquitin ligases, but binds exclusively to inactive unneddylated forms of the enzyme. By identifying a simple means to reversibly activate this complex in budding yeast, Zemla et al . resolve this paradox and show that CAND1 acts as an exchange factor for substrate adaptors.
doi_str_mv 10.1038/ncomms2628
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00966127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929069601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-565fd293ede6648e5b279d72d2a7738dcbf33f315bd6ca16916f3f6f23297d1b3</originalsourceid><addsrcrecordid>eNpl0clOwzAQAFALgQBBL3wAisSFRQHPOLGTYxWWIlVwAM6RE4-hKEuJE0T_HpeyCXzx9jTj8TC2B_wUuEjOmrKta4cSkzW2jTyCEBSK9V_rLTZy7pn7IVJIomiTbaGIRSwlbrOL7O4mDHRjgmx8cw6hoTk1hpo-6KhuDVXVrHkMWhv0TxQUgzHL7YK064O77DLwyecVve2yDasrR6PPeYc9XF7cZ5Nwent1nY2nYRkh9GEsY2swFWRIyiihuECVGoUGtVIiMWVhhbAC4sLIUoNMQVphpUWBqTJQiB12tIr7pKt83s1q3S3yVs_yyXiaL884T6UEVK_g7eHKzrv2ZSDX5_XMlb4g3VA7uBwEgkpVgsrTgz_0uR26xlfyoXjCIUGvjleq7FrnOrLfLwCeL3uR__TC4_3PkENRk_mmXz_vwckKOH_VPFL3K-f_cO8eGI_n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321080182</pqid></control><display><type>article</type><title>CSN- and CAND1-dependent remodelling of the budding yeast SCF complex</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zemla, Aleksandra ; Thomas, Yann ; Kedziora, Sylwia ; Knebel, Axel ; Wood, Nicola T. ; Rabut, Gwenaël ; Kurz, Thimo</creator><creatorcontrib>Zemla, Aleksandra ; Thomas, Yann ; Kedziora, Sylwia ; Knebel, Axel ; Wood, Nicola T. ; Rabut, Gwenaël ; Kurz, Thimo</creatorcontrib><description>Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation–deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. CAND1 promotes the activity of Cullin–RING ubiquitin ligases, but binds exclusively to inactive unneddylated forms of the enzyme. By identifying a simple means to reversibly activate this complex in budding yeast, Zemla et al . resolve this paradox and show that CAND1 acts as an exchange factor for substrate adaptors.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2628</identifier><identifier>PMID: 23535662</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/45/474/2073 ; Biochemistry, Molecular Biology ; Carbon ; Carbon - metabolism ; Humanities and Social Sciences ; Life Sciences ; multidisciplinary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins ; Saccharomyces cerevisiae Proteins - physiology ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.1641-1641, Article 1641</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-565fd293ede6648e5b279d72d2a7738dcbf33f315bd6ca16916f3f6f23297d1b3</citedby><cites>FETCH-LOGICAL-c421t-565fd293ede6648e5b279d72d2a7738dcbf33f315bd6ca16916f3f6f23297d1b3</cites><orcidid>0000-0003-2658-2769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms2628$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms2628$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904,41099,42168,51555</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23535662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-00966127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zemla, Aleksandra</creatorcontrib><creatorcontrib>Thomas, Yann</creatorcontrib><creatorcontrib>Kedziora, Sylwia</creatorcontrib><creatorcontrib>Knebel, Axel</creatorcontrib><creatorcontrib>Wood, Nicola T.</creatorcontrib><creatorcontrib>Rabut, Gwenaël</creatorcontrib><creatorcontrib>Kurz, Thimo</creatorcontrib><title>CSN- and CAND1-dependent remodelling of the budding yeast SCF complex</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation–deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. CAND1 promotes the activity of Cullin–RING ubiquitin ligases, but binds exclusively to inactive unneddylated forms of the enzyme. By identifying a simple means to reversibly activate this complex in budding yeast, Zemla et al . resolve this paradox and show that CAND1 acts as an exchange factor for substrate adaptors.</description><subject>631/337</subject><subject>631/45/474/2073</subject><subject>Biochemistry, Molecular Biology</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>multidisciplinary</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0clOwzAQAFALgQBBL3wAisSFRQHPOLGTYxWWIlVwAM6RE4-hKEuJE0T_HpeyCXzx9jTj8TC2B_wUuEjOmrKta4cSkzW2jTyCEBSK9V_rLTZy7pn7IVJIomiTbaGIRSwlbrOL7O4mDHRjgmx8cw6hoTk1hpo-6KhuDVXVrHkMWhv0TxQUgzHL7YK064O77DLwyecVve2yDasrR6PPeYc9XF7cZ5Nwent1nY2nYRkh9GEsY2swFWRIyiihuECVGoUGtVIiMWVhhbAC4sLIUoNMQVphpUWBqTJQiB12tIr7pKt83s1q3S3yVs_yyXiaL884T6UEVK_g7eHKzrv2ZSDX5_XMlb4g3VA7uBwEgkpVgsrTgz_0uR26xlfyoXjCIUGvjleq7FrnOrLfLwCeL3uR__TC4_3PkENRk_mmXz_vwckKOH_VPFL3K-f_cO8eGI_n</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Zemla, Aleksandra</creator><creator>Thomas, Yann</creator><creator>Kedziora, Sylwia</creator><creator>Knebel, Axel</creator><creator>Wood, Nicola T.</creator><creator>Rabut, Gwenaël</creator><creator>Kurz, Thimo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2658-2769</orcidid></search><sort><creationdate>2013</creationdate><title>CSN- and CAND1-dependent remodelling of the budding yeast SCF complex</title><author>Zemla, Aleksandra ; Thomas, Yann ; Kedziora, Sylwia ; Knebel, Axel ; Wood, Nicola T. ; Rabut, Gwenaël ; Kurz, Thimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-565fd293ede6648e5b279d72d2a7738dcbf33f315bd6ca16916f3f6f23297d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337</topic><topic>631/45/474/2073</topic><topic>Biochemistry, Molecular Biology</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>multidisciplinary</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zemla, Aleksandra</creatorcontrib><creatorcontrib>Thomas, Yann</creatorcontrib><creatorcontrib>Kedziora, Sylwia</creatorcontrib><creatorcontrib>Knebel, Axel</creatorcontrib><creatorcontrib>Wood, Nicola T.</creatorcontrib><creatorcontrib>Rabut, Gwenaël</creatorcontrib><creatorcontrib>Kurz, Thimo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zemla, Aleksandra</au><au>Thomas, Yann</au><au>Kedziora, Sylwia</au><au>Knebel, Axel</au><au>Wood, Nicola T.</au><au>Rabut, Gwenaël</au><au>Kurz, Thimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CSN- and CAND1-dependent remodelling of the budding yeast SCF complex</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1641</spage><epage>1641</epage><pages>1641-1641</pages><artnum>1641</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation–deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. CAND1 promotes the activity of Cullin–RING ubiquitin ligases, but binds exclusively to inactive unneddylated forms of the enzyme. By identifying a simple means to reversibly activate this complex in budding yeast, Zemla et al . resolve this paradox and show that CAND1 acts as an exchange factor for substrate adaptors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23535662</pmid><doi>10.1038/ncomms2628</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2658-2769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013, Vol.4 (1), p.1641-1641, Article 1641
issn 2041-1723
2041-1723
language eng
recordid cdi_hal_primary_oai_HAL_hal_00966127v1
source MEDLINE; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 631/337
631/45/474/2073
Biochemistry, Molecular Biology
Carbon
Carbon - metabolism
Humanities and Social Sciences
Life Sciences
multidisciplinary
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae Proteins - physiology
Science
Science (multidisciplinary)
title CSN- and CAND1-dependent remodelling of the budding yeast SCF complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CSN-%20and%20CAND1-dependent%20remodelling%20of%20the%20budding%20yeast%20SCF%20complex&rft.jtitle=Nature%20communications&rft.au=Zemla,%20Aleksandra&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=1641&rft.epage=1641&rft.pages=1641-1641&rft.artnum=1641&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2628&rft_dat=%3Cproquest_hal_p%3E2929069601%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321080182&rft_id=info:pmid/23535662&rfr_iscdi=true